Establishing secure connection… Loading editor… Preparing document…
Navigation

Fill and Sign the Informed Consent and Request for Colposcopy

Fill and Sign the Informed Consent and Request for Colposcopy

How it works

Open the document and fill out all its fields.
Apply your legally-binding eSignature.
Save and invite other recipients to sign it.

Rate template

4.8
45 votes
A  System  for  Proac/ve,  Con/nuous,   and  Efficient  Collec/on  of  Digital   Evidence   Clay  Shields   Ophir  Frieder   Mark  Maloof   Department  of  Computer  Science   Georgetown  University   Mo/va/on   • How  do  you  find  Bradley   Manning?   (Assuming  Adrian  Lamo   doesn’t  turn  him  in)   – Very  large  network   – Some  documents  from  that   network   • Who  had  access?   • Who  released  them?   Scalable  Internal  Inves/ga/ons   • You  own  the  equipment  in  advance   – Can  plan  for  inves/ga/ons  in  advance   • However   – Forensic  tools  were  developed  for  situa/ons  where   equipment  was  seized   • Assume  no  prior  access  to  equipment   – Added  client-­‐server  model  allows  remote  inves/ga/on   • Some  agent  capabili/es   • Huge  amounts  of  informa/on  distributed  across  many   machines   – Where  have  we  seen  this?   PROOFS   An  Informa/on  Retrieval  Approach   • Google  for  forensic  examiners   – Save  informa/on  in  advance  to  make  life  easier  later   – Centralize  it  for  easy  searching   • Parse  and  record  data  about  file  contents   – When  files  are  unlinked  or  closed     – Store  informa/on  in  a  scalable  manner   • Allows  inves/ga/on  over  four  axes   – – – – Time   User  ID   System  ID   File  contents   Forensic  Document  Signatures   • The  informa/on  stored  is  a  document  signature   – Store  in  a  central  database  for  ease  of  searching   • Local  storage  temporarily  when  needed   – Metadata  about  the  file   • Path,  size,  owner,  MAC  dates   – One  or  more  file  fingerprints   • Computed  from  file  content   – Outside  In  or  similar  can  be  used  to  extract  text   • Unlike  hashes  can  match  across  edits   • Can  match  across  file  types   Fingerprint  Crea/on   • Use  a  training  set  of  documents   – Documents  that  are  similar  to  those  sought   – General  documents  in  correct  language   • Extract  sta/s/cally  important  terms   |#D| idfT = log 1+ | # DT | • Create  a  dic/onary  of  terms  within  a  range  of  IDFs   – Low  IDFs  too  common   – High  IDFs  too  dis/nct   Bit  Vector  Fingerprints   • A  Bit  Vector  fingerprint  shows  which  dic/onary   terms  were  present  in  a  document   – Process  document   – For  each  term  in  document  in  dic/onary,  mark  that   posi/on     • Generally  sparse,  highly  compressible   • Can  add  terms  to  end  of  vector  over  /me   – Allows  for  different  dic/onary  versions   • Robust  matching  using  cosine  similarity   – Parameter  allows  tradeoff  of  accuracy   Bit  Vector  Size  vs.  Performance   Precision   enron - Dictionary Size vs. Precision, various IDF ranges 1 Average Precision 0.8 0.6 0.4 1% Dictionary Sample 5% Dictionary Sample 10% Dictionary Sample 20% Dictionary Sample 30% Dictionary Sample 0.2 0 0 5000 10000 15000 20000 25000 30000 35000 40000 Average Dictionary Size (uncompressed bits) 45000 50000 55000 60000 Bit  Vector  Size  vs.  Performance   Recall   enron - Dictionary Size vs. Recall, various IDF ranges 1 Average Recall 0.8 0.6 0.4 1% Dictionary Sample 5% Dictionary Sample 10% Dictionary Sample 20% Dictionary Sample 30% Dictionary Sample 0.2 0 0 5000 10000 15000 20000 25000 30000 35000 40000 Average Dictionary Size (uncompressed bits) 45000 50000 55000 60000 Performance  with  Errors   • Forensic  recovery  oZen  finds  file  fragments   • Text  extrac/on  is  prone  to  errors   – Forma[ng   – OCR   • Simulate  these  errors  in  our  tes/ng   – Delete  sec/ons,  tokens,  characters   – Insert  tokens,  characters,  whitespace   – Change  token,  character   – Automated  edits  for  size   Bit  Vector  Fingerprint   Robustness   Enron Dataset, Matcher Setting 80, 95% CI Error Bars 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Average Precision Average Recall 0 10 20 30 40 50 60 70 % of File Deleted Contiguously 80 90 100 Bit  Vector  Fingerprint   Robustness   Enron Dataset, Matcher Setting 60, 95% CI Error Bars 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Average Precision Average Recall 0 10 20 30 40 50 60 70 % of File Deleted Contiguously 80 90 100 Bit  Vector  Fingerprint   Robustness   Enron Dataset, Matcher Setting 40, 95% CI Error Bars 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 Average Precision Average Recall 0 10 20 30 40 50 60 70 % of File Deleted Contiguously 80 90 100 Overhead   • Two  concerns:     – Storage   – CPU  usage   • Trace  driven  simula/on  to  determine   feasability   – Email  traces  from  Georgetown  University   • ~8800  users   – SOS  file  system  traces  from  Harvard  server     • Older,  but  public   Email  Overhead     Emails Processed by Georgetown Mail Server, Dec. 2008 - Oct. 2009 900000 800000 Emails Received Emails Sent Number of Email 700000 600000 500000 400000 300000 200000 100000 0 01/01/09 03/01/09 05/01/09 Date 07/01/09 09/01/09 11/01/09 Email  Overhead   Cumulative Fingerprint Storage Required with 1,024 B Email Signatures 180000 Storage Space in MB 160000 140000 Received Email Fingerprint Storage Sent Email Fingerprint Storage Total Email Fingerprint Storage 120000 100000 80000 60000 40000 20000 0 01/01/09 03/01/09 05/01/09 Date 07/01/09 09/01/09 11/01/09 Server  Storage  Overhead   3000 200000 DEASNA Storage Space Files Removed Per Day 150000 2000 100000 1000 50000 0 10/19 10/26 11/02 Date 11/09 11/16 0 11/23 Daily Deleted Files Storage Space Required in MB Cumulative Storage Space for DEASNA with 1,024 B Signatures Server  Ac/vity   Server  CPU  Ac/vity   Server  CPU  Ac/vity   Supported  Inves/ga/ons   • Leaked  Documents   – Given  a  recovered  document,  find  all  users  that  have  ever  held  a  copy   • Misuse  Inves/ga/ons   – Determine  what  files  an  employee  was  copying  or  accessing   – Determine  email  correspondence,  web  access   • Keyword  Search  Overwriaen  Files   – Iden/fy  which  systems  to  preserve  when  so  required   • Intrusion  Response   – Given  a  file  that  was  used  in  an  intrusion,  find  all  systems  that  had  that   file   • Examina/on  support   – Iden/fy  fragment  sources   • Lost  equipment  review   – What  was  on  that  laptop  leZ  in  the  taxi?   Con/nuing  Work   • Use  fingerprints  as  an  alterna/ve  to  hashes  in   large  data  sets   – Fingerprint  documents  by  sec/on   • OS  Hooks   – Process  files  as  they  are  modified  or  deleted   • Fast  fingerprint  matching   – Cosine  matching  is  not  suitable  for  Bloom  Filters   • Create  signatures  for  non-­‐text  files   – Images,  audio,  video,  executables,  source  code   Summary   • PROOFS  allows  for  efficient  proac/ve   collec/on   – Google  for  forensic  examiners   – Make  inves/ga/ons  faster,  cheaper  and  more   accurate   • Fingerprints  have  other  uses  as  well   – Recognizing  files  in  large  data  sets   A  System  for  Proac/ve,  Con/nuous,   and  Efficient  Collec/on  of  Digital   Evidence   Clay  Shields   Ophir  Frieder   Mark  Maloof   Department  of  Computer  Science   Georgetown  University  

Practical advice on finishing your ‘Informed Consent And Request For Colposcopy’ online

Are you fed up with the inconvenience of handling paperwork? Search no further than airSlate SignNow, the leading electronic signature platform for individuals and businesses. Bid farewell to the monotonous routine of printing and scanning documents. With airSlate SignNow, you can seamlessly complete and sign documents online. Take advantage of the powerful features embedded in this intuitive and cost-effective platform and transform your method of document administration. Whether you need to sign forms or gather eSignatures, airSlate SignNow simplifies the process, requiring merely a few clicks.

Follow this detailed guide:

  1. Log into your account or register for a complimentary trial of our service.
  2. Click +Create to upload a file from your device, cloud storage, or our template collection.
  3. Open your ‘Informed Consent And Request For Colposcopy’ in the editor.
  4. Click Me (Fill Out Now) to finalize the document on your part.
  5. Insert and assign fillable fields for others (if necessary).
  6. Proceed with the Send Invite settings to solicit eSignatures from others.
  7. Save, print your copy, or convert it into a reusable template.

No need to worry if you need to collaborate with your colleagues on your Informed Consent And Request For Colposcopy or send it for notarization—our solution provides everything you require to complete such tasks. Sign up with airSlate SignNow today and take your document management to new levels!

Here is a list of the most common customer questions. If you can’t find an answer to your question, please don’t hesitate to reach out to us.

Need help? Contact Support
Colposcopy consent form PDF
Colposcopy procedure steps
Colposcopy position name
Colposcopy instruments names
Colposcopy procedure video
Colposcopy procedure steps PPT
Colposcopy acetic acid and iodine
Colposcopy findings interpretation
Sign up and try Informed consent and request for colposcopy
  • Close deals faster
  • Improve productivity
  • Delight customers
  • Increase revenue
  • Save time & money
  • Reduce payment cycles