Generalized Inverses: Theory and Applications
Bibliography for the 2nd Edition
August 29, 2002
[2145] items
Adi Ben-Israel
Thomas N.E. Greville†
RUTCOR–Rutgers Center for Operations Research, Rutgers University,
640 Bartholomew Rd, Piscataway, NJ 08854-8003, USA
E-mail address: bisrael@rutcor.rutgers.edu
Bibliography
15.
16.
1. K. Abdel-Malek and Harn-Jou Yeh, On the determination of starting points for parametric surface
intersections, Computer-aided Design 29 (1997),
no. 1, 21–35.
2. N. N. Abdelmalek, On the solutions of the linear
least squares problems and pseudo–inverses, Computing 13 (1974), no. 3-4, 215–228.
3. V. M. Adukov, Generalized inversion of block
Toeplitz matrices, Linear Algebra and its Applications 274 (1998), 85–124.
4.
, Generalized inversion of finite rank Hankel and Toeplitz operators with rational matrix
symbols, Linear Algebra and its Applications 290
(1999), no. 1-3, 119–134.
5. S. N. Afriat, On the latent vectors and characteristic values of products of pairs of symmetric idempotents, Quart. J. Math. Oxford Ser. (2) 7 (1956),
76–78.
, Orthogonal and oblique projectors and the
6.
characteristics of pairs of vector spaces, Proc. Cambridge Philos. Soc. 53 (1957), 800–816.
7. J. H. Ahlberg, E. N. Nilson, and J. L. Walsh, The
Theory of Splines and their Applications, Academic
Press, New York, 1967.
8. A. C. Aitken, On least squares and linear combinations of observations, Proceedings of the Royal
Society of Edinburgh, Sec A 55 (1934), 42–47.
9. Y. Akatsuka and T. Matsuo, Optimal control of
linear discrete systems using the generalized inverse
of a matrix, Techn Rept. 13, Institute of Automatic
Control, Nagoya Univ., Nagoya, Japan, 1965.
10. F. Akdeniz, A note concerning the Gauss-Markov
theorem, J. Fac. Sci. Karadeniz Tech. Univ. 1
(1977), 129–133.
11. F. Akdeniz and M. Sweilem, An application of the
generalized inverse to the two way classification
for estimating variance components, J. Karadeniz
Univ. Fac. Arts Sci. Ser. Math.-Phys. 9 (1986), 1–
10, (extension of [1732]).
12. I. S. Alalouf and G. P. H. Styan, Characterizations
of estimability in the general linear model, Ann.
Statist. 7 (1979), no. 1, 194–200.
13.
, Estimability and testability in restricted
linear models, Math. Operationsforsch. Statist. Ser.
Statist. 10 (1979), no. 2, 189–201.
14. A. Albert, Conditions for positive and nonnegative
definiteness in terms of pseudo–inverses, SIAM J.
Appl. Math. 17 (1969), 434–440.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
3
, Regression and the Moore–Penrose Pseudoinverse, Academic Press, New York, 1972.
, The Gauss–Markov theorem for regression
models with possibly singular covariances, SIAM J.
Appl. Math. 24 (1973), 182–187.
, Statistical applications of the pseudo inverse, In Nashed [1402], pp. 525–548.
A. Albert and R. W. Sittler, A method for computing least squares estimators that keep up with the
data, SIAM J. Control 3 (1965), 384–417.
V. Aleksić and V. Rakočević, Approximate properties of the Moore-Penrose inverse, VIII Conference
on Applied Mathematics (Tivat, 1993), Univ. Montenegro, Podgorica, 1994, pp. 1–14.
B. A. Aliev, The pseudo-inverse operator for the
product of two operators, Vestnik Moskov. Univ.
Ser. XV Vychisl. Mat. Kibernet. (1979), no. 2, 11–
15, 70.
M. F. Allam and M. A. Laughton, The use
of pseudo and oblique pseudo-inverse matrices in
power system state estimation algorithms, Internat.
J. Control 24 (1976), no. 5, 661–671.
E. L. Allgower, K. Böhmer, A. Hoy, and
V. Janovský, Direct methods for solving singular nonlinear equations, ZAMM Z. Angew. Math.
Mech. 79 (1999), 219–231.
E. L. Allgower and K. Georg, Numerical path following, Handbook of Numerical Analysis, Vol. V,
North-Holland, Amsterdam, 1997, pp. 3–207.
D. Alpay, J. A. Ball, and V. Bolotnikov, On the
bitangential interpolation problem for contractive
valued functions in the polydisk, J. Operator Theory 44 (2000), no. 2, 277–301.
D. Alpay, V. Bolotnikov, and Ph. Loubaton, One
two-sided residue interpolation for matrix-valued
H2 -functions with symmetries, J. Math. Anal.
Appl. 200 (1996), no. 1, 76–105.
D. Alpay, V. Bolotnikov, and L. Rodman, Onesided tangential interpolation for operator-valued
Hardy functions on polydisks, Integral Equations
Operator Theory 35 (1999), no. 3, 253–270.
, Two-sided tangential interpolation for
Hilbert-Schmidt operator functions on polydisks,
Operator Theory: Advances and Applications 124
(2001), 21–62.
M. Altman, A generalization of Newton’s method,
Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom.
Phys. 3 (1955), 189–193.
, On a generalization of Newton’s method,
Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom.
Phys. 5 (1957), 789–795.
4
BIBLIOGRAPHY
30. J. K. Amburgey, T. O. Lewis, and T. L. Boullion, On computing generalized characteristic vectors and values for a rectangular matrix, In Boullion and Odell [255], pp. 267–275.
31. A. R. Amir-Moéz, Geometry of generalized inverses, Math. Mag. 43 (1970), 33–36.
32.
, Quasi-singular values of linear transformations, Rend. Circ. Mat. Palermo (2) 22 (1973),
no. 3, 314–316 (1974).
33.
, Geometry of determinants and Grassmann
algebras, Delta (Waukesha) 5 (1975), no. 2, 71–83.
34.
, Extreme Properties of Linear Transformations, Polygonal Publ. House, Washington, NJ,
1990.
35. A. R. Amir-Moéz and R. E. Byerly, Pythagorean
theorem in unitary spaces, Univ. Beograd. Publ.
Elektrotehn. Fak. Ser. Mat. 7 (1996), 85–89.
36. A. R. Amir-Moéz and A. Horn, Singular values of a
matrix, Amer. Math. Monthly 65 (1958), 742–748.
37. C. L. Anderson, A Geometric Theory of Pseudoinverses and some Applications in Statistics, Master’s thesis in statistics, Southern Methodist Univ.,
1967.
38. R. D. Anderson, H. V. Henderson, F. Pukelsheim,
and S. R. Searle, Best estimation of variance components from balanced data, with arbitrary kurtosis, Math. Operationsforsch. Statist. Ser. Statist.
15 (1984), no. 2, 163–176.
39. W. N. Anderson, Jr., Shorted operators, SIAM J.
Appl. Math. 20 (1971), 520–525.
40. W. N. Anderson, Jr. and R. J. Duffin, Series and
parallel addition of matrices, SIAM J. Appl. Math.
26 (1969), 576–594, (see [1085]).
41. W. N. Anderson, Jr. and M. Schreiber, The infimum of two projections, Acta Sci. Math. (Szeged)
33 (1972), 165–168.
42. W. N. Anderson, Jr. and G. E. Trapp, Inequalities
for the parallel connection of resistive n-port networks, J. Franklin Inst. 209 (1975), no. 5, 305–313.
43.
, Shorted operators. II, SIAM J. Appl.
Math. 28 (1975), 60–71, (this concept first introduced by Krein [1088]).
44.
, Analytic operator functions and electrical
networks, In Campbell [320], pp. 12–26.
45.
, Inverse problems for means of matrices,
SIAM J. Algebraic Discrete Methods 7 (1986),
no. 2, 188–192.
46. T. Ando, Generalized Schur complements, Linear
Algebra and its Applications 27 (1979), 173–186.
47. Mihai Anitescu, Dan I. Coroian, M. Zuhair Nashed,
and Florian A. Potra, Outer inverses and multibody system simulation, Numer. Funct. Anal. Optim. 17 (1996), no. 7-8, 661–678.
48. P. M. Anselone and P. J. Laurent, A general method
for the construction of interpolating or smoothing
spline-functions, Numer. Math. 12 (1968), 66–82.
49. H. Anton and C. S. Duris, On minimum norm and
best approximate solutions of Av = b in normed
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
spaces, J. Approximation Theory 16 (1976), no. 3,
245–250.
A. C. Antoulas, Approximation of linear operators
in the 2-norm, Linear Algebra and its Applications
278 (1998), no. 1-3, 309–316.
R. C. Archibald, A Semicentennial History of the
American Mathematical Society 1888–1938 (2 volumes), American Mathematical Society, New York,
1938.
E. Arghiriade, Sur les matrices qui sont permutables avec leur inverse généralisée, Atti Accad. Naz.
Lincei Rend. Cl. Sci. Fis. Mat. Natur. Ser. VIII 35
(1963), 244–251.
, On the generalized inverse of a product of
matrices, An. Univ. Timişoara Ser. Şti. Mat.-Fiz.
No. 5 (1967), 37–42.
, Remarques sur l’inverse généralisée d’un
produit de matrices, Atti Accad. Naz. Lincei Rend.
Cl. Sci. Fis. Mat. Natur. Ser. VIII 42 (1967), 621–
625.
, Sur quelques équations fonctionnelles de
matrices, Rev. Roumaine Math. Pures Appl. 12
(1967), 1127–1133.
, Sur l’inverse généralisée d’un operateur
lineaire dans les espaces de Hilbert, Atti Accad.
Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. Ser.
VIII 45 (1968), 471–477.
E. Arghiriade and A. Dragomir, Une nouvelle
définition de l’inverse généralisée d’une matrice,
Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat.
Natur. (8) 35 (1963), 158–165.
, Remarques sur quelques théoremes relatives a l’inverse généralisée d’un operateur lineaire
dans les espaces de hilbert, Atti Accad. Naz. Lincei
Rend. Cl. Sci. Fis. Mat. Natur. Ser. VIII 46 (1969),
333–338.
I. K. Argyros, Local convergence theorems of Newton’s method for nonlinear equations using outer
or generalized inverses, Czechoslovak Math. J.
50(125) (2000), no. 3, 603–614.
S. Aronowitz and B. E. Eichinger, Petrie matrices
and generalized inverses, J. Math. Phys. 16 (1975),
1278–1283.
N. Aronszajn, Theory of reproducing kernels,
Trans. Amer. Math. Soc. 68 (1950), 337–404.
F. V. Atkinson, The normal solvability of linear
equations in normed spaces (russian), Mat. Sbornik
N.S. 28(70) (1951), 3–14.
, On relatively regular operators, Acta Sci.
Math. Szeged 15 (1953), 38–56.
K. E. Atkinson, The solution of non-unique linear
integral equations, Numer. Math. 10 (1967), 117–
124, (see also [1368]).
L. Autonne, Sur les groupes linéaires, réels et orthogonaux, Bull. Soc. Math. France 30 (1902), 121–
134.
, Sur les matrices hypohermitiennes et sur
les matrices unitaires, Ann. Univ. Lyon, Nouvelle
BIBLIOGRAPHY
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
Sér. I 38 (1915), 1–77, (see history of SVD in
[1765]).
K. E. Avrachenkov, M. Haviv, and P. G. Howlett,
Inversion of analytic matrix functions that are singular at the origin, SIAM J. Matrix Anal. Appl. 22
(2001), no. 4, 1175–1189 (electronic).
Gorô Azumaya, Strongly π-regular rings, J. Fac.
Sci. Hokkaido Univ. Ser. I. 13 (1954), 34–39.
G. Backus, Inference from inadequate and inaccurate data. I, II, Proc. Nat. Acad. Sci. U.S.A. 65
(1970), 1–7; ibid. 65 (1970), 281–287.
G. Backus and F. Gilbert, Uniqueness in the inversion of inaccurate gross Earth data, Philos. Trans.
Roy. Soc. London Ser. A 266 (1970), no. 1173, 123–
192.
C. Badea and M. Mbekhta, Generalized inverses
and the maximal radius of regularity of a Fredholm
operator, Integral Equations Operator Theory 28
(1997), no. 2, 133–146.
, Compressions of resolvents and maximal
radius of regularity, Trans. Amer. Math. Soc. 351
(1999), no. 7, 2949–2960.
J. K. Baksalary, A relationship between the star and
minus orderings, Linear Algebra and its Applications 82 (1986), 163–167.
J. K. Baksalary and O. M. Baksalary, Commutativity of projectors, Linear Algebra and its Applications 341 (2002), 129–142.
J. K. Baksalary and J. Hauke, Partial orderings of
matrices referring to singular values or eigenvalues,
Linear Algebra and its Applications 96 (1987), 17–
26.
J. K. Baksalary and R. Kala, The matrix equation
AX−Y B = C, Linear Algebra and its Applications
25 (1979), 41–43.
, The matrix equation AXB + CY D = E,
Linear Algebra and its Applications 30 (1980),
141–147.
, Two properties of a nonnegative definite
matrix, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28
(1980), no. 5-6, 233–235 (1981).
, On equalities between BLUEs, WLSEs,
and SLSEs, Canad. J. Statist. 11 (1983), no. 2,
119–123, (extension of [1204]).
, Range invariance of certain matrix products, Linear and Multilinear Algebra 14 (1983),
no. 1, 89–96.
, Corrigendum: “On equalities between
BLUEs, WLSEs, and SLSEs”, Canad. J. Statist.
12 (1984), no. 3, 240.
J. K. Baksalary and T. Mathew, Rank invariance
criterion and its application to the unified theory of
least squares, Linear Algebra and its Applications
127 (1990), 393–401.
J. K. Baksalary and S. K. Mitra, Left-star and
right-star partial orderings, Linear Algebra and its
Applications 149 (1991), 73–89.
J. K. Baksalary, P. R. Pordzik, and G. Trenkler,
A note on generalized ridge estimators, Comm.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
5
Statist. Theory Methods 19 (1990), no. 8, 2871–
2877.
J. K. Baksalary and F. Pukelsheim, On the Löwner,
minus, and star partial orderings of nonnegative
definite matrices and their squares, Linear Algebra
and its Applications 151 (1991), 135–141.
J. K. Baksalary, F. Pukelsheim, and G. P. H. Styan,
Some properties of matrix partial orderings, Linear
Algebra and its Applications 119 (1989), 57–85.
J. K. Baksalary, S. Puntanen, and H. Yanai,
Canonical correlations associated with symmetric
reflexive generalized inverses of the dispersion matrix, Linear Algebra and its Applications 176
(1992), 61–74.
J. K. Baksalary, P. Šemrl, and G. P. H. Styan, A
note on rank–aditivity and range–aditivity, Linear
Algebra and its Applications 237–238 (1996), 489–
498.
A. V. Balakrishnan, An operator theoretic formulation of a class of control problems and a steepest
descent method of solution, J. Soc. Indust. Appl.
Math. Ser. A: Control 1 (1963), 109–127.
K. F. Baldwin and A. E. Hoerl, Bounds of minimum mean squared error in ridge regression,
Comm. Statist. A—Theory Methods 7 (1978),
no. 13, 1209–1218.
J. A. Ball, M. Rakowski, and B. F. Wyman, Coupling operators, Wedderburn-Forney spaces, and
generalized inverses, Linear Algebra and its Applications 203/204 (1994), 111–138.
K. S. Banerjee, Singularity in Hotelling’s weighing designs and generalized inverses, Ann. Math.
Statist. 37 (1966), 1021–1032, (erratum, ibid
40(1969), 710).
K. S. Banerjee and W. T. Federer, On the structure
and analysis of singular fractional replicates, Ann.
Math. Statist. 39 (1968), 657–663.
R. B. Bapat, Generalized inverses with proportional
minors, Linear Algebra and its Applications 211
(1994), 27–33.
, Moore–Penrose inverse of the incidence
matrix of a tree, Linear and Multilinear Algebra
42 (1997), no. 2, 159–167.
, Structure of a nonnegative regular matrix
and its generalized inverses, Linear Algebra and its
Applications 268 (1998), 31–39.
, Linear Algebra and Linear Models, second
ed., Hindustan Book Agency, New Delhi, 1999.
, Linear estimation in models based on
a graph, Linear Algebra and its Applications
302/303 (1999), 223–230.
, Resistance distance in graphs, Mathematics Student 68 (1999), 87–98.
, Moore-Penrose inverse of set inclusion
matrices, Linear Algebra and its Applications 318
(2000), no. 1-3, 35–44.
, Outer inverses: Jacobi type identities and
nullities of submatrices, To appear (2002).
6
BIBLIOGRAPHY
102. R. B. Bapat and A. Ben-Israel, Singular values and
maximum rank minors of generalized inverses, Linear and Multilinear Algebra 40 (1995), no. 2, 153–
161.
103. R. B. Bapat and R. E. Hartwig, A master of the
row space and the column space: the mathematical
work of Sujit Kumar Mitra, In Bapat et al. [108],
(special issue of Linear Algebra and its Applications
211 (1994)), pp. 5–14.
104. R. B. Bapat, S. K. Jain, and S. Pati, Weighted
Moore-Penrose inverse of a Boolean matrix, Linear
Algebra and its Applications 255 (1997), 267–279.
105. R. B. Bapat, S. K. Jain, and K. M. Prasad, Generalized power symmetric stochastic matrices, Proc.
Amer. Math. Soc. 127 (1999), no. 7, 1987–1994.
106. R. B. Bapat, S. K. Jain, and L. E. Snyder, Nonnegative idempotent matrices and the minus partial order, Linear Algebra and its Applications 261
(1997), 143–154.
107. R. B. Bapat and D. M. Kulkarni, Minors of some
matrices associated with a tree, Algebra and Its Applications. Contemporary Mathematics 259 (D. V.
Huynh, S. K. Jain, S. R. Lopez-Permouth Ed.),
American Math Society, Providence, RI, 2000,
pp. 45–66.
108. R. B. Bapat, S. K. Mitra, and R. Hartwig (eds.),
Generalized inverses. papers from the workshop on
g-inverses held in calcutta, december 11–16, 1993,
New York, North-Holland Publishing Co., 1994,
(special issue of Linear Algebra and its Applications 211 (1994)).
109. R. B. Bapat and Sukanta Pati, Algebraic connectivity and the characteristic set of a graph, Linear and
Multilinear Algebra 45 (1998), no. 2-3, 247–273.
110. R. B. Bapat and K. M. Prasad, Cochran’s theorem
and related results on matrix rank over a commutative ring, Statistical Inference and Design of Experiments (U. J. Dixit and M. R. Satam Ed.), Narosa
Publishing House, 1999, pp. 125–133.
111. R. B. Bapat and T. E. S. Raghavan, Nonnegative
Matrices and Applications, Cambridge University
Press, Cambridge, 1997.
112. R. B. Bapat, K. P. S. Bhaskara Rao, and K. M.
Prasad, Generalized inverses over integral domains, Linear Algebra and its Applications 140
(1990), 181–196.
113. R. B. Bapat and D. W. Robinson, The MoorePenrose inverse over a commutative ring, Linear
Algebra and its Applications 177 (1992), 89–103.
114. G. P. Barker and S. L. Campbell, Internal stability
of two-dimensional systems, Linear and Multilinear
Algebra 14 (1983), no. 4, 365–369.
115. G. A. Barnard, The logic of least squares, J. Roy.
Statist. Soc. Ser. B 25 (1963), 124–127.
116. S. Barnett, Matrices in Control Theory, Van Nostrand Reinhold, London, 1971.
, Matrices: Methods and Applications,
117.
Clarendon Press, Oxford, 1990.
118. H. Bart, M. A. Kaashoek, and D. C. Lay, Relative
inverses of meromorphic operator functions and associated holomorphic projection functions, Math.
Ann. 218 (1975), no. 3, 199–210.
119. G. Basile, Alcune osservazioni sulla pseudoinversa
di una matrice rettangolare., Atti Accad. Sci. Ist.
Bologna Cl. Sci. Fis. Rend. (12) 6 (1968/1969),
no. fasc., 1–2, 236–240.
120. T. S. Baskett and I. J. Katz, Theorems on products
of EPr matrices, Linear Algebra and its Applications 2 (1969), 87–103.
121. H. Bateman, A formula for the solving function of a
certain integral equation of the second kind, Transactions of the Cambridge Philosophical Society 20
(1908), 179–187.
, On the application of integral equations
122.
to the determination of upper and lower limits of
a double integral, Transactions of the Cambridge
Philosophical Society 21 (1908), 123–128.
123.
, The reality of the roots of certain transcendental equations occurring in the theory of integral
equations, Transactions of the Cambridge Philosophical Society 20 (1908), 371–381.
124.
, On the numerical solution of linear integral equations, Proc. Roy. Soc. London Ser. A 100
(1922), 441–449.
125. D. Batigne, Integral generalized inverses of integral
matrices, Linear Algebra and its Applications 22
(1978), 125–134.
126. D. R. Batigne, F. J. Hall, and I. J. Katz, Further results on integral generalized inverses of integral matrices, Linear and Multilinear Algebra 6 (1978/79),
no. 3, 233–241.
127. F. L. Bauer, A further generalization of the Kantorovič inequality, Numer. Math. 3 (1961), 117–
119.
128.
, Elimination with weighted row combinations for solving linear equations and least squares
problems, Numer. Math. 7 (1965), 338–352, (republished, pp. 119–133 in [2058]).
129.
, Theory of norms, Computer Science Dept.
CS 75, Stanford University, Stanford, 1967.
130. F. L. Bauer, J. Stoer, and C. Witzgall, Absolute
and monotonic norms, Numer. Math. 3 (1961),
257–264.
131. E. F. Beckenbach and R. Bellman, Inequalities, 3rd
ed., Springer-Verlag, New York, 1971.
132. R. Bellman, Introduction to Matrix Analysis, 2nd
ed., McGraw-Hill Book Co., New York, 1970.
133. E. Beltrami, Sulle funzioni bilineari, Giornale di
Matematiche ad Uso degli Studenti Delle Universita 11 (1873), 98–106, (an English translation by
D. Boley is available as University of Minnesota,
Department of Computer Science, Technical Report 90–37, 1990. see history of SVD in [1765]).
134. E. J. Beltrami, A constructive proof of the Kuhn–
Tucker multiplier rule, J. Math. Anal. Appl. 26
(1969), 297–306.
BIBLIOGRAPHY
135. A. Ben-Israel, On direct sum decompositions of
Hestenes algebras, Israel J. Math. 2 (1964), 50–54.
, An iterative method for computing the gen136.
eralized inverse of an arbitrary matrix, Math. Comput. 19 (1965), 452–455.
137.
, A modified Newton-Raphson method for
the solution of systems of equations, Israel J. Math.
3 (1965), 94–98.
138.
, A Newton-Raphson method for the solution of systems of equations, J. Math. Anal. Appl.
15 (1966), 243–252.
139.
, A note on an iterative method for generalized inversion of matrices, Math. Comput. 20
(1966), 439–440.
140.
, A note on the Cayley transform, Notices
Amer. Math. Soc. 13 (1966), 599.
141.
, On error bounds for generalized inverses,
SIAM J. Numer. Anal. 3 (1966), 585–592, (see also
[1759]).
142.
, On iterative methods for solving nonlinear
least squares problems over convex sets, Israel J.
Math. 5 (1967), 211–214.
143.
, On the geometry of subspaces in Euclidean
n–spaces, SIAM J. Appl. Math. 15 (1967), 1184–
1198.
144.
, On applications of generalized inverses in
nonlinear analysis, In Boullion and Odell [255],
pp. 183–202.
145.
, On decompositions of matrix spaces with
applications to matrix equations, Atti Accad. Naz.
Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 45
(1968), 122–128.
146.
, On optimal solutions of 2-person 0-sum
games, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis.
Mat. Natur. (8) 44 (1968), 512–516.
147.
, A note on partitioned matrices and equations, SIAM Rev. 11 (1969), 247–250.
148.
, On matrices of index zero or one, SIAM
J. Appl. Math. 17 (1969), 1118–1121, (see [1281],
[1630]).
149.
, On Newton’s method in nonlinear programming, In Kuhn [1098], pp. 339–352.
150.
, Applications of generalized inverses to programming, games, and networks, In Nashed [1402],
pp. 495–523.
151.
, A Cramer rule for least-norm solutions
of consistent linear equations, Linear Algebra
and its Applications 43 (1982), 223–226, (see
[1906], [373], [375], [374], [1781], [1927], [1932],
[2034]).
152.
, Generalized inverses of matrices: a perspective of the work of Penrose, Math. Proc. Cambridge Philos. Soc. 100 (1986), no. 3, 407–425.
153.
, A volume associated with m × n matrices,
Linear Algebra and its Applications 167 (1992),
87–111, (this concept was introduced by Good
[687]).
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
7
, The change-of-variables formula using matrix volume, SIAM J. Matrix Anal. Appl. 21
(1999), no. 1, 300–312 (electronic).
, A local inverse for nonlinear mappings,
Numer. Algorithms 25 (2000), no. 1-4, 37–46,
Mathematical journey through analysis, matrix
theory and scientific computation (Kent, OH,
1999).
, An application of the matrix volume in
probability, Linear Algebra and its Applications
321 (2001), 9–25.
, The Moore of the Moore–Penrose inverse,
To appear (2002).
A. Ben-Israel and A. Charnes, Contributions to the
theory of generalized inverses, J. Soc. Indust. Appl.
Math. 11 (1963), 667–699.
, Generalized inverses and the Bott-Duffin
network analysis, J. Math. Anal. Appl. 7 (1963),
428–435, (corrigendum in J. Math. Anal. Appl.
18(1967), 393).
, An explicit solution of a special class
of linear programming problems, Operations Res.
16 (1968), 1166–1175, (see [181], [209], [1597],
[1645]).
A. Ben-Israel, A. Charnes, and P. D. Robers, On
generalized inverses and interval linear programming, In Boullion and Odell [255], pp. 53–70.
A. Ben-Israel and D. Cohen, On iterative computation of generalized inverses and associated projections, SIAM J. Numer. Anal. 3 (1966), 410–419.
A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, WileyInterscience [John Wiley & Sons], New York, 1974,
(reprinted by Robert E. Krieger Publishing Co.
Inc., Huntington, NY, 1980.).
, Some topics in generalized inverses of matrices, In Nashed [1402], pp. 125–147.
A. Ben-Israel and M. J. L. Kirby, A characterization of equilibrium points of bimatrix games, Atti
Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur.
(8) 46 (1969), 402–407.
A. Ben-Israel and S. J. Wersan, An elimination
method for computing the generalized inverse of an
arbitrary complex matrix, J. Assoc. Comput. Mach.
10 (1963), 532–537.
A. Ben-Tal and M. Teboulle, A geometric property of the least squares solution of linear equations,
Linear Algebra and its Applications 139 (1990),
165–170, (see [177], [487], [153], [168], [233],
[612]).
, Addenda: “A geometric property of the
least squares solution of linear equations” [Linear
Algebra Appl. 139 (1990), 165–170], Linear Algebra and its Applications 180 (1993), 5.
J. M. Bennett and J. J. Edwards, A graph isomorphism algorithm using pseudoinverses, BIT 36
(1996), no. 1, 41–53.
M. W. Benson and P. O. Frederickson, Fast parallel
algorithms for the Moore-Penrose pseudo-inverse,
8
BIBLIOGRAPHY
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
Hypercube Multiprocessors 1987 (Knoxville, TN,
1986), SIAM, Philadelphia, PA, 1987, pp. 597–604.
, Fast pseudo-inverse algorithms on hypercubes, Multigrid Methods (Copper Mountain, CO,
1987), Dekker, New York, 1988, pp. 23–33.
M. Benzi and C. D. Meyer, Jr., A direct projection method for sparse linear systems, SIAM J. Sci.
Comput. 16 (1995), no. 5, 1159–1176.
H. Berens and M. Finzel, A continuous selection
of the metric projection in matrix spaces, Numerical Methods of Approximation Theory, Vol. 8
(Oberwolfach, 1986), Birkhäuser, Basel, 1987, (see
[174]), pp. 21–29.
, Addendum: “A continuous selection of the
metric projection in matrix spaces” [in numerical
methods of approximation theory, vol. 8 (Oberwolfach, 1986), 21–29, Birkhäuser, Basel, 1987; MR
90i:41040], Numer. Math. 57 (1990), no. 6-7, 663–
667.
I.S. Berezin and N.P. Zhidkov, Computing Methods, Pergamon Press, London, 1965.
L. Berg, Über quasivertauschbare Matrixinversen,
Rostock. Math. Kolloq. (1980), no. 15, 5–10.
, Three results in connection with inverse
matrices, Linear Algebra and its Applications 84
(1986), 63–77, (see also [167]).
M. Berger and B. Gostiaux, Differential Geometry:
Manifolds, Curves and Surfaces, Graduate Texts in
Mathematics No. 115, Springer-Verlag, New York,
1988, (translated by S. Levy).
P. G. Bergman, R. Penfield, R. Schiller, and H. Zatkis, The Hamiltonian of the general theory of relativity with electromagnetic field, Physical Review
52 (1950), 1950.
A. Berman, Nonnegative matrices which are equal
to their generalized inverse, Linear Algebra and its
Applications 9 (1974), 261–265.
, Generalized interval programming, Bull.
Calcutta Math. Soc. 71 (1979), no. 3, 169–176.
A. Berman and S. K. Jain, Nonnegative generalized
inverses of powers of nonnegative matrices, Linear
Algebra and its Applications 107 (1988), 169–179.
A. Berman and M. Neumann, Consistency and
splittings, SIAM J. Numer. Anal. 13 (1976), no. 6,
877–888.
, Proper splittings of rectangular matrices,
SIAM J. Appl. Math. 31 (1976), no. 2, 307–312.
A. Berman and R. J. Plemmons, Monotonicity and
the generalized inverse, SIAM J. Appl. Math. 22
(1972), 155–161.
, Cones and iterative methods for best least
squares solutions of linear systems, SIAM J. Numer. Anal. 11 (1974), 145–154.
, Inverses of nonnegative matrices, Linear
and Multilinear Algebra 2 (1974), 161–172.
, Nonnegative Matrices in the Mathematical
Sciences, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994, (revised
reprint of the 1979 original).
189. L. Bernard, A generalized inverse method for asymptotic linear programming, Mathematical Programming 43 (1989), 71–86.
, An efficient basis update for asymptotic
190.
linear programming, Linear Algebra and its Applications 184 (1993), 83–102.
191. Kenneth W. Berryman, Mario E. Inchiosa,
Arthur M. Jaffe, and Steven A. Janowsky, Extending the pseudoinverse rule, Neural Networks and
Spin Glasses (Pôrto Alegre, 1989), World Sci. Publishing, Teaneck, NJ, 1990, pp. 169–175.
192. M. Bertero, C. De Mol, and E. R. Pike, Linear inverse problems with discrete data. I. General
formulation and singular system analysis, Inverse
Problems 1 (1985), no. 4, 301–330.
193.
, Linear inverse problems with discrete data.
II. Stability and regularisation, Inverse Problems 4
(1988), no. 3, 573–594.
194. J. Bérubé, R. E. Hartwig, and G. P. H. Styan,
On canonical correlations and the degrees of nonorthogonality in the three-way layout, Statistical
Sciences and Data Analysis (Tokyo, 1991), VSP,
Utrecht, 1993, pp. 247–252.
195. F. J. Beutler, The operator theory of the pseudoinverse. I. Bounded operators, J. Math. Anal. Appl.
10 (1965), 451–470.
196.
, The operator theory of the pseudo-inverse.
II. Unbounded operators with arbitrary range, J.
Math. Anal. Appl. 10 (1965), 471–493.
197. F. J. Beutler and W. L. Root, The operator pseudoinverse in control and systems identification, In
Nashed [1402], pp. 397–494.
198. J. H. Bevis, F. J. Hall, and R. E. Hartwig, Consimilarity and the matrix equation AX − XB = C,
Current Trends in Matrix Theory (Auburn, Ala.,
1986), North-Holland, New York, 1987, pp. 51–64.
199.
, The Drazin inverse of a semilinear transformation and its matrix representation, Linear Algebra and its Applications 97 (1987), 229–242.
200. J. H. Bevis, F. J. Hall, and I. J. Katz, Integer generalized inverses of incidence matrices, Linear Algebra and its Applications 39 (1981), 247–258.
201. R. Bhatia, Perturbation Bounds for Matrix Eigenvalues, Longman Scientific & Technical, Harlow,
1987.
202.
, Letter to the editor: “The n-dimensional
Pythagorean theorem” [Linear and Multilinear Algebra 26(1990), no. 1-2, 9–13; MR 90k:51031] by
S.-Y. T. Lin and Y. F. Lin, Linear and Multilinear
Algebra 30 (1991), no. 1-2, 155, (see [1178]).
203.
, Matrix Analysis, Springer-Verlag, New
York, 1997.
204. P. Bhimasankaram, A characterization of subclasses of generalized inverses of specified rank,
Sankhyā Ser. A 36 (1974), no. 2, 214–218.
205.
, On generalized inverses of a block in a
partitioned matrix, Linear Algebra and its Applications 109 (1988), 131–143.
BIBLIOGRAPHY
206.
207.
208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
, Rank factorization of a matrix and its applications, Math. Sci. 13 (1988), no. 1, 4–14, (see
[1587]).
P. Bhimasankaram and T. Mathew, On ordering
properties of generalized inverses of nonnegative
definite matrices, Linear Algebra and its Applications 183 (1993), 131–146.
P. Bhimasankaram and R. SahaRay, On a partitioned linear model and some associated reduced
models, Linear Algebra and its Applications 264
(1997), 329–339.
M. Bilodeau, Sur une représentation explicite
des solutions optimales d’un programme linéaire,
Canad. Math. Bull. 29 (1986), no. 4, 419–425.
G. D. Birkhoff, Review of “The New Haven Colloquium. by E. H. Moore, E. J. Wilczynski, M.
Mason. Yale University Press, 1910, x + 222 p.”,
Bull. Amer. Math. Soc. 17 (1911), 414–428.
Z. W. Birnbaum, Introduction to Probability and
Mathematical Statistics, Harper & Brothers, Publishers, New York, 1962.
A. Bjerhammar, Application of calculus of matrices
to method of least squares with special reference to
geodetic calculations, Trans. Roy. Inst. Tech. Stockholm 1951 (1951), no. 49, 86 pp. (2 plates).
, Rectangular reciprocal matrices, with
special reference to geodetic calculations, Bull.
Géodésique (1951), 188–220.
, A generalized matrix algebra, Trans. Roy.
Inst. Tech. Stockholm 1958 (1958), no. 124, 32 pp.
, Studies with generalized matrix algebra,
Bull. Géodésique (N.S.) No. 85 (1967), 193–210.
, Theory of Errors and Generalized Matrix
Inverses, Elsevier Scientific Publishing Co., Amsterdam, 1973.
Å. Björck, Iterative refinement of linear least
squares solutions I, BIT 7 (1967), 257–278.
, Solving linear least squares problems by
Gram–Schmidt orthogonalization, BIT 7 (1967), 1–
21.
, Iterative refinement of linear least squares
solutions II, BIT 8 (1968), 8–30.
, A uniform numerical method for linear estimation from general Gauss-Markov models, Proceedings of the First Symposium on Comutational
Statistics (COMPSTAT), (G. Bruckmann, F. Ferschl and L. Schmetterer, Editors), Physica Verlag,
Vienna, 1974, pp. 131–140.
, Numerical Methods for Least Squares
Problems, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994.
Å. Björck and C. Bowie, An iterative algorithm for
computing the best estimate of an orthogonal matrix, SIAJN 8 (1971), no. 2, 358–364.
Å. Björck and T. Elfving, Accelerated projection
methods for computing pseudoinverse solutions of
systems of linear equations, BIT 19 (1979), 145–
163.
9
224. Å. Björck and G. H. Golub, Iterative refinement of
linear least squares solutions by householder transformation, BIT 7 (1967), 322–337.
, Numerical methods for computing angles
225.
between linear subspaces, Mathematics of Computation 27 (1973), 579–594.
226. B. Blaschke, A. Neubauer, and O. Scherzer, On
convergence rates for the iteratively regularized
Gauss-Newton method, IMA J. Numer. Anal. 17
(1997), no. 3, 421–436.
227. J. Blatter and E. W. Cheney, On the existence of
extremal projections, J. Approximation Theory 6
(1972), 72–79.
228. J. W. Blattner, Bordered matrices, J. Soc. Indust.
Appl. Math. 10 (1962), 528–536.
229.
, On the convergence of a certain matrix iteration, Bul. Inst. Politehn. Iaşi (N.S.) 10 (14)
(1964), no. 3-4, 43–46.
230. G. A. Bliss, Eliakim Hastings Moore, Bull. Amer.
Math. Soc. 39 (1933), 831–838.
231.
, The scientific work of Eliakim Hastings
Moore, Bull. Amer. Math. Soc. 40 (1934), 501–514.
232. L. Bober and P. Chrzan, Application of the generalized Moore-Penrose matrix inversion to the estimation of a classical econometric model under additional constraints, Przeglad Statyst. 25 (1978),
‘
no. 3, 315–324 (1979).
233. E. Y. Bobrovnikova and S. A. Vavasis, A norm
bound for projections with complex weights, Linear
Algebra and its Applications 307 (2000), no. 1-3,
69–75, (a complex version of the bounds in [1764],
[1846]).
234. P. T. Boggs, The convergence of the Ben-Israel iteration for nonlinear least squares problems, Math.
Comp. 30 (1976), no. 135, 512–522.
235. E. Bohl and P. Lancaster, Perturbation of spectral
inverses applied to a boundary layer phenomenon
arising in chemical networks, Linear Algebra and
its Applications 180 (1993), 35–59.
236. F. Bohnenblust, A characterization of complex
Hilbert spaces, Portugal. Math. 3 (1942), 103–109.
237. E. Boman and I. Koltracht, Computing preconditioners via subspace projection, Linear Algebra and
its Applications 302/303 (1999), 347–353.
238. T. Bonnesen and W. Fenchel, Theorie der konvexen
Körper, Springer, Berlin, 1934.
239. C. de Boor, The Method of Projections as applied
to the Numerical Solution of Two Point Boundary
Value Problems using Cubic Splines, Doctoral dissertation in mathematics, University of Michigan,
Ann Arbor, MI, 1966.
240.
, Convergence of abstract splines, J. Approx. Theory 31 (1981), no. 1, 80–89.
241. J. C. G. Boot, The computation of the generalized
inverse of singular or rectangular matrices, Amer.
Math. Monthly 70 (1963), 302–303.
242. E. Boroş, On the generalized inverse of an EPr
matrix, An. Univ. Timişoara Ser. Şti. Mat.-Fiz. No.
2 (1964), 33–38.
10
243.
244.
245.
246.
247.
248.
249.
250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
BIBLIOGRAPHY
, On certain properties of EPr matrices, An.
Univ. Timişoara Ser. Şti. Mat.-Fiz. No. 3 (1965),
77–84.
, Das verallgemeinerte Inverse eines linearen Operators in Vektorräumen mit nicht ausgearteter Hermitescher Metrik über einem kommutativen Körper, J. Reine Angew. Math. 252 (1972),
68–78.
, The generalized inverse of linear operators on spaces with indefinite metric, An. Univ.
Timişoara Ser. Ştiinţ. Mat. 21 (1983), no. 1-2, 9–
44.
E. Boroş and I. Sturz, On quasi-inverse matrices, An. Univ. Timişoara Ser. Şti. Mat.-Fiz. No.
1 (1963), 59–66.
N. K. Bose and S. K. Mitra, Generalized inverse of
polynomial matrices, IEEE Trans. Automatic Control 23 (1978), no. 3, 491–493, (see also [1730]).
R. C. Bose, The fundamental theorem of linear estimation (abstract), Proc. 31st Indian Sci. Congress
(1944), 2–3.
R. Bott and R. J. Duffin, On the algebra of networks, Trans. Amer. Math. Soc. 74 (1953), 99–109.
R. H. Bouldin, The product of operators with closed
range, Tôhoku Math. J. (2) 25 (1973), 359–363.
, The pseudo-inverse of a product, SIAM J.
Appl. Math. 24 (1973), 489–495.
, Selfadjoint approximants, Indiana Univ.
Math. J. 27 (1978), no. 2, 299–307.
, Generalized inverses and factorizations, In
Campbell [320], pp. 233–249.
T. L. Boullion, Contributions to the Theory of
Pseudoinverses, Ph.D. thesis, University of Texas,
Austin, 1966.
T. L. Boullion and P. L. Odell (eds.), Proceedings of
the Symposium on Theory and Applications Generalized Inverses of Matrices, Lubbock, Texas Tech.
Press, 1968.
, A note on the Scroggs-Odell pseudoinverse, SIAM J. Appl. Math. 17 (1969), 7–10, (correction of [1670, Theorem 6]).
, Generalized Inverse Matrices, John Wiley
& Sons, New York, 1971.
T. L. Boullion and G. D. Poole, A characterization
of the general solution of the matrix equation AX +
XB = C, Indust. Math. 20 (1970), 91–95.
Z. Boulmaarouf, M. Fernandez Miranda, and J-Ph.
Labrousse, An algorithmic approach to orthogonal
projections and Moore-Penrose inverses, Numer.
Funct. Anal. Optim. 18 (1997), no. 1-2, 55–63.
E. Bounitzky, Sur la fonction de Green des
équations differentielles linéaires ordinaires, J.
Math. Pures Appl. 5 (1909), no. 6, 65–125.
N. Bourbaki, Eléments de Mathématiques. Livre V.
Espaces Vectoriels Topologiques, Hermann & Cie,
Paris, 1953.
, Eléments de Mathématiques. Livre II.
Algèbre, Hermann & Cie, Paris, 1958.
263. H. J. Bowdler, R. S. Martin, G. Peters, and J. H.
Wilkinson, Solutions of real and complex systems of
linear equations, Numer. Math. 8 (1966), 217–239,
(republished, pp. 93–110 in [2058]).
264. V. J. Bowman and C.-A. Burdet, On the general
solution to systems of mixed–integer linear equations, SIAM J. Appl. Math. 26 (1974), 120–125.
265. Yu. E. Boyarintsev, General solutions of boundary value problems for singular systems of ordinary
differential equations, Čisl. Metody Meh. Splošn.
Sredy 8 (1977), no. 7, 12–21.
, A representation of the Drazin inverse
266.
matrix, Numerical Methods of Optimization (Applied Mathematics) (Russian), Akad. Nauk SSSR
Sibirsk. Otdel. Ènerget. Inst., Irkutsk, 1978,
pp. 176–179.
267.
, Regulyarnye i Singulyarnye Sistemy
Lineinykh Obyknovennykh Differentsialnykh Uravnenii, “Nauka” Sibirsk. Otdel., Novosibirsk, 1980.
268.
, Solving a pair of matrices, Approximate
Methods for Solving Operator Equations and their
Applications, Akad. Nauk SSSR Sibirsk. Otdel.
Ènerget. Inst., Irkutsk, 1982, pp. 35–47.
269.
, Representation of the solutions of a system
of linear algebraic equations by means of generalized inverse matrices, Computational Methods in
Linear Algebra (Russian) (Moscow, 1982), Akad.
Nauk SSSR Otdel Vychisl. Mat., Moscow, 1983,
pp. 33–45.
270.
, The solving pair of matrices and its application, Current Problems in Numerical and Applied Mathematics (Novosibirsk, 1981), “Nauka”
Sibirsk. Otdel., Novosibirsk, 1983, pp. 52–55.
271.
, Degenerate systems and the index of a
variable matrix, Differential Equations and Numerical Methods, “Nauka” Sibirsk. Otdel., Novosibirsk, 1986, pp. 105–114, 277.
272.
, Methods of Solving Singular Systems of
Ordinary Differential Equations, John Wiley &
Sons Ltd., Chichester, 1992, (translation of the
1988 Russian original).
273.
, A resolving transformation of unknowns
in an implicit system of ordinary differential equations, Algebrodifferential Systems and Methods for
their Solution (Russian), VO “Nauka”, Novosibirsk, 1993, pp. 4–19, 90.
274. Yu. E. Boyarintsev, V. A. Danilov, A. A. Loginov,
and V. F. Chistyakov, Chislennye Metody Resheniya Singulyarnykh Sistem, “Nauka” Sibirsk. Otdel., Novosibirsk, 1989.
275. Yu. E. Boyarintsev and V. M. Korsukov, The structure of a general continuously differentiable solution of a boundary value problem for a singular system of ordinary differential equations, Questions in
Applied Mathematics (Russian), Sibirsk. Ènerget.
Inst., Akad. Nauk SSSR Sibirsk. Otdel., Irkutsk,
1977, pp. 73–93.
276. F. Brackx, R. Delanghe, and J. Van hamme, Generalized inverses of elliptic systems of differential
BIBLIOGRAPHY
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
operators with constant coefficients and related REDUCE programs for explicit calculations, Rend.
Circ. Mat. Palermo (2) Suppl. (1987), no. 16, 21–
28.
H. W. Braden, R-matrices and generalized inverses, J. Phys. A 30 (1997), no. 15, L485–L493.
, The equations AT X ± X T A = B, SIAM
J. Matrix Anal. Appl. 20 (1999), no. 2, 295–302
(electronic).
J. S. Bradley, Adjoint quasi–differential operators
of Euler type, Pacific J. Math. 16 (1966), 213–237.
, Generalized Green’s matrices for compatible differential systems, Michigan Math. J. 13
(1966), 97–108.
L. Brand, The solution of linear algebraic equations, Math. Gaz. 46 (1962), 203–237.
C. Brezinski, Projection methods for linear systems, J. Comput. Appl. Math. 77 (1997), no. 1-2,
35–51, (ROLLS Symposium (Leipzig, 1996)).
C. Brezinski, M. Morandi Cecchi, and M. Redivo Zaglia, The reverse bordering method, SIAM
J. Matrix Anal. Appl. 15 (1994), no. 3, 922–937.
C. Brezinski and M. Redivo Zaglia, Extrapolation
Methods. Theory and practice, with 1 IBM-PC
floppy disk (5.25 inch), North-Holland Publishing
Co., Amsterdam, 1991.
P. Broadbridge and H. G. Petersen, Use of generalized inverses in the construction of Hamiltonians
for constrained dynamical systems, Confronting the
Infinite (Adelaide, 1994), World Sci. Publishing,
River Edge, NJ, 1995, pp. 307–318.
C. G. den Broeder Jr. and A. Charnes, Contributions to the theory of generalized inverses for matrices, Dept. of math., Purdue University, Lafayette,
IN, 1957, (Reprinted as ONR Res. Memo. No. 39,
Northwestern University, Evanston, IL, 1962).
D. S. Broomhead, R. Jones, G. P. King, and
E. R. Pike, Singular system analysis with application to dynamical systems, Chaos, Noise and Fractals (Como, 1986), Hilger, Bristol, 1987, pp. 15–27.
K. G. Brown, On ridge estimation in rank deficient models, Comm. Statist. A—Theory Methods
7 (1978), no. 2, 187–192.
R. C. Brown, Generalized Green’s functions and
generalized inverses for linear differential systems
with Stieltjes boundary conditions, J. Differential
Equations 16 (1974), 335–351.
R. Bru and N. Thome, Group inverse and group involutory matrices, Linear and Multilinear Algebra
45 (1998), no. 2-3, 207–218.
R. A. Brualdi, From the Editor-in-Chief. Comment
on: “The explicit solutions and solvability of matrix equations” [Linear Algebra Appl. 311 (2000),
no. 1-3, 195–199; MR 2000m:15019] by L. Huang,
Linear Algebra and its Applications 320 (2000),
no. 1-3, 216.
R. A. Brualdi and H. Schneider, Determinantal
identities : Gauss, Schur, Cauchy, Sylvester, Kronecker, Jacobi, Binet, Laplace, Muir and Cayley,
293.
294.
295.
296.
297.
298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
11
Linear Algebra and its Applications 52 (1983),
769–791.
J. T. Bruening, A new formula for the MoorePenrose inverse, Current Trends in Matrix Theory
(Auburn, Ala., 1986), North-Holland, New York,
1987, pp. 65–74.
R. S. Bucy, Comments on a paper by F. E.
Udwadia and R. E. Kalaba: “A new perspective on constrained motion” [Proc. Roy. Soc. London Ser. A 439 (1992), no. 1906, 407–410; MR
94b:70027], Proc. Roy. Soc. London Ser. A 444
(1994), no. 1920, 253–255, (see [990]).
Hamza Bulut and S. Aysun Bulut, Spectral decompositions and generalized inverses in a circularization network flow problem, J. Math. Anal. Appl.
174 (1993), 390–402.
W. Burmeister, Inversionfreie Verfahren zur
Lösung nichtlinearer Operatorgleichungen, Zeit.
angew. Math. Mech. 52 (1972), 101–110.
F. Burns, D. Carlson, E. V. Haynsworth, and
T. Markham, Generalized inverse formulas using
the Schur complement, SIAM J. Appl. Math. 26
(1974), 254–259.
P. A. Businger and G. H. Golub, Linear least
squares by Householder transformations, Numer.
Math. 7 (1965), 269–276, (republished, pp. 111–
118 in [2058]).
, Algorithm 358: Singular value decomposition of a complex matrix, Comm. ACM 12 (1969),
564–565.
C. A. Butler and T. D. Morley, A note on the
shorted operator, SIAM J. Matrix Anal. Appl. 9
(1988), no. 2, 147–155.
, Six generalized Schur complements, Linear
Algebra and its Applications 106 (1988), 259–269.
Kim Ki-Hang Butler, A Moore-Penrose inverse for
Boolean relation matrices, Combinatorial Mathematics (Proc. Second Australian Conf., Univ. Melbourne, Melbourne, 1973), Springer, Berlin, 1974,
pp. 18–28. Lecture Notes in Math., Vol. 403.
J. A. Cadzow, A finite algorithm for the minimum
l∞ solution to a system of consistent linear equations, SIAM J. Numer. Anal. 10 (1973), 607–617.
G. D. Callon and C. W. Groetsch, The method
of weighting and approximation of restricted pseudosolutions, J. Approx. Theory 51 (1987), no. 1,
11–18.
S. L. Campbell, Differentiation of the Drazin inverse, SIAM J. Appl. Math. 30 (1976), no. 4, 703–
707.
, The Drazin inverse of an infinite matrix,
SIAM J. Appl. Math. 31 (1976), no. 3, 492–503,
(see [318]).
, Optimal control of autonomous linear
processes with singular matrices in the quadratic
cost functional, SIAM J. Control Optimization 14
(1976), no. 6, 1092–1106.
12
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.
323.
324.
325.
326.
327.
328.
BIBLIOGRAPHY
, Linear systems of differential equations
with singular coefficients, SIAM J. Math. Anal. 8
(1977), no. 6, 1057–1066.
, On continuity of the Moore-Penrose and
Drazin generalized inverses, Linear Algebra and
Appl. 18 (1977), no. 1, 53–57.
, Optimal control of discrete linear processes
with quadratic cost, Internat. J. Systems Sci. 9
(1978), no. 8, 841–847.
, Singular perturbation of autonomous linear systems. II, J. Differential Equations 29 (1978),
no. 3, 362–373.
, Limit behavior of solutions of singular difference equations, Linear Algebra and its Applications 23 (1979), 167–178.
, Nonregular singular dynamic Leontief systems, Econometrica 47 (1979), no. 6, 1565–1568.
, On a singularly perturbed autonomous linear control problem, IEEE Trans. Automat. Control 24 (1979), no. 1, 115–117.
, Continuity of the Drazin inverse, Linear
and Multilinear Algebra 8 (1979/80), no. 3, 265–
268.
, Singular Systems of Differential Equations, Pitman (Advanced Publishing Program),
Boston, Mass., 1980.
, On an assumption guaranteeing boundary
layer convergence of singularly perturbed systems,
Automatica—J. IFAC 17 (1981), no. 4, 645–646.
, The Drazin inverse of an operator, [320],
pp. 250–260.
, On positive controllers and linear quadratic optimal control problems, Internat. J. Control 36 (1982), no. 5, 885–888.
S. L. Campbell (ed.), Recent Applications of Generalized Inverses, Boston, Mass., Pitman (Advanced
Publishing Program), 1982.
, Singular Systems of Differential Equations. II, Pitman (Advanced Publishing Program),
Boston, Mass., 1982.
, Index two linear time-varying singular systems of differential equations, SIAM J. Algebraic
Discrete Methods 4 (1983), no. 2, 237–243.
, Control problem structure and the numerical solution of linear singular systems, Math. Control Signals Systems 1 (1988), no. 1, 73–87.
, Uniqueness of completions for linear time
varying differential algebraic equations, Linear Algebra and its Applications 161 (1992), 55–67.
, Least squares completions for nonlinear
differential algebraic equations, Numer. Math. 65
(1993), no. 1, 77–94.
S. L. Campbell and C. D. Meyer, Jr., Continuity
properties of the Drazin pseudoinverse, Linear Algebra and its Applications 10 (1975), 77–83.
, EP operators and generalized inverses,
Canad. Math. Bull 18 (1975), no. 3, 327–333.
, Weak Drazin inverses, Linear Algebra and
its Applications 20 (1978), no. 2, 167–178.
329.
330.
331.
332.
333.
334.
335.
336.
337.
338.
339.
340.
341.
342.
343.
344.
345.
346.
, Generalized Inverses of Linear Transformations, Pitman (Advanced Publishing Program),
Boston, Mass., 1979, (reprinted by Dover, 1991).
S. L. Campbell, C. D. Meyer, Jr., and N. J. Rose,
Applications of the Drazin inverse to linear systems
of differential equations with singular constant coefficients, SIAM J. Appl. Math. 31 (1976), no. 3,
411–425, (see [1459], [400], [763], [2057]).
S. L. Campbell and G. D. Poole, Computing nonnegative rank factorizations, Linear Algebra and its
Applications 35 (1981), 175–182.
, Convergent regular splittings for nonnegative matrices, Linear and Multilinear Algebra 10
(1981), no. 1, 63–73.
S. L. Campbell and M. Rakowski, Explicit formulae for completions of linear time varying singular
systems of differential equations, Circuits Systems
Signal Process. 13 (1994), no. 2-3, 185–199.
S. L. Campbell and N. J. Rose, Singular perturbation of autonomous linear systems. III, Houston J.
Math. 4 (1978), no. 4, 527–539.
, Singular perturbation of autonomous linear systems, SIAM J. Math. Anal. 10 (1979), no. 3,
542–551.
, A second order singular linear system arising in electric power systems analysis, Internat. J.
Systems Sci. 13 (1982), no. 1, 101–108.
S. L. Campbell and K. D. Yeomans, Behavior of
the nonunique terms in general DAE integrators,
Appl. Numer. Math. 28 (1998), no. 2-4, 209–226.
Wei Ping Cao and Ji Pu Ma, Perturbation of A+
0 h,
Numer. Math. J. Chinese Univ. (English Ser.) 3
(1994), no. 1, 96–103.
, The pointwise continuity of the M-P generalized inverses A+
x , Acta Math. Sinica 40 (1997),
no. 2, 287–295.
, Moore-Penrose generalized inverses of
closed operators, Nanjing Daxue Xuebao Shuxue
Bannian Kan 16 (1999), no. 1, 75–81.
S. R. Caradus, An equational approach to products
of relatively regular operators, Aequationes Math.
15 (1977), no. 1, 55–62.
, Generalized Inverses and Operator Theory, Queen’s University, Kingston, Ont., 1978.
D. Carlson, Matrix decompositions involving the
Schur complement, SIAM J. Appl. Math. 28
(1975), 577–587.
, What are Schur complements, anyway?,
Linear Algebra and its Applications 74 (1986),
257–275.
, Generalized inverse invariance, partial orders, and rank-minimization problems for matrices,
Current Trends in Matrix Theory (Auburn, Ala.,
1986), North-Holland, New York, 1987, pp. 81–87.
D. Carlson, E. V. Haynsworth, and T. Markham, A
generalization of the Schur complement by means
of the Moore–Penrose inverse, SIAM J. Appl.
Math. 26 (1974), 169–175.
BIBLIOGRAPHY
347. R. Caron, H. J. Greenberg, and A. Holder, Analytic centers and repelling inequalities, Tech. Report CCM 142, Center for Computational Mathematics, University of Colorado at Denver, 1999,
(to appear in European Journal of Operations Research).
348. N. Castro González, On the convergence of semiiterative methods to the Drazin inverse solution of
linear equations in Banach spaces, Collect. Math.
46 (1995), no. 3, 303–314.
349. N. Castro González and J. J. Koliha, Semi-iterative
methods for the Drazin inverse solution of linear
equations in Banach spaces, Numer. Funct. Anal.
Optim. 20 (1999), no. 5-6, 405–418.
350.
, Perturbation of the Drazin inverse for
closed linear operators, Integral Equations Operator Theory 36 (2000), no. 1, 92–106.
351. N. Castro González, J. J. Koliha, and I. Straškraba,
Perturbation of the Drazin inverse, Soochow J.
Math. 27 (2001), no. 2, 201–211.
352. N. Castro González, J. J. Koliha, and Yimin Wei,
Perturbation of the Drazin inverse for matrices
with equal eigenprojections at zero, Linear Algebra
and its Applications 312 (2000), no. 1-3, 181–189.
353. D. E. Catlin, Estimation, Control, and the Discrete
Kalman Filter, Springer–Verlag, New York, 1989,
(see, in particular, pp. 100–113).
354. Jian Miao Cen, Fuzzy matrix partial orderings and
generalized inverses, Fuzzy Sets and Systems 105
(1999), no. 3, 453–458.
355. B. L. Chalmers, F. T. Metcalf, and B. Shekhtman, On the computation of minimal projections:
millennium report, Applied Mathematics Reviews,
Vol. 1, World Sci. Publishing, River Edge, NJ,
2000, pp. 119–156.
356. N. N. Chan, On a downdating formula for regression, J. Statist. Plann. Inference 46 (1995), no. 3,
347–350, (see [531]).
357. E. Chang, The generalized inverse and interpolation theory, In Campbell [320], pp. 196–219.
358. A. Charnes and W. W. Cooper, Structural sensitivity analysis in linear programming and an exact
product form left inverse, Naval Res. Logist. Quart.
15 (1968), 517–522.
359. A. Charnes, W. W. Cooper, and G. L. Thompson,
Constrained generalized medians and hypermedians
as deterministic equivalents for two–stage linear
programs under uncertainty, Management Sci. 12
(1965), 83–112.
360. A. Charnes and F. Granot, Existence and representation of Diophantine and mixed Diophantine
solutions to linear equations and inequalities, Center for cybernetic studies, The University of Texas,
Austin, TX, 1973.
361. A. Charnes and M. J. L. Kirby, Modular design,
generalized inverses and convex programming, Operations Res. 13 (1965), 836–847.
362. Guoliang Chen, Musheng Wei, and Yifeng Xue,
Perturbation analysis of the least squares solution
363.
364.
365.
366.
367.
368.
369.
370.
371.
372.
373.
374.
375.
376.
377.
378.
13
in Hilbert spaces, Linear Algebra and its Applications 244 (1996), 69–80.
Guoliang Chen and Yimin Wei, Perturbation analysis for the projection of a point onto an affine set
in a Hilbert space, Chinese Ann. Math. Ser. A 19
(1998), no. 4, 405–410, (translation in Chinese J.
Contemp. Math. 19(1998), 245–252).
Guoliang Chen and Yifeng Xue, Perturbation analysis for the operator equation T x = b in Banach
spaces, J. Math. Anal. Appl. 212 (1997), no. 1,
107–125.
, The expression of the generalized inverse
of the perturbed operator under Type I perturbation
in Hilbert spaces, Linear Algebra and its Applications 285 (1998), no. 1-3, 1–6.
Han Fu Chen, Two kinds of linear estimators in
Hilbert spaces, and their connection, Acta Math.
Sinica 25 (1982), no. 6, 671–679.
X. Chen, M. Z. Nashed, and L. Qi, Convergence
of Newton’s method for singular smooth and nonsmooth equations using adaptive outer inverses,
SIAM J. Optim. 7 (1997), 445–462.
Xuzhou Chen and R. E. Hartwig, The group inverse of a triangular matrix, Linear Algebra and
its Applications 237/238 (1996), 97–108.
, The hyperpower iteration revisited, Linear
Algebra Appl. 233 (1996), 207–229.
, On the convergence of power scaled Cesàro
sums, Linear Algebra and its Applications 267
(1997), 335–358.
Yong-Lin Chen, On the weighted projector and
weighted generalized inverse matrices, Acta Math.
Appl. Sinica 6 (1983), no. 3, 282–291.
, The generalized Bott-Duffin inverse and
its applications, Linear Algebra and its Applications 134 (1990), 71–91.
, A Cramer rule for solution of the general
restricted linear equation, Linear and Multilinear
Algebra 34 (1993), no. 2, 177–186.
, An explicit representation of the general
solution to a system of constrained linear equations
and Cramer’s rule, Gaoxiao Yingyong Shuxue Xuebao 8 (1993), no. 1, Ser. A, 61–70.
, Representations and Cramer rules for the
solution of a restricted matrix equation, Linear and
Multilinear Algebra 35 (1993), no. 3-4, 339–354.
, Finite algorithms for the (2)-generalized
(2)
inverse AT,S , Linear and Multilinear Algebra 40
(1995), no. 1, 61–68.
, Iterative methods for solving restricted linear equations, Appl. Math. Comput. 86 (1997),
no. 2-3, 171–184.
, Defining equations and explicit expressions
(2)
for the generalized inverse AT,S , J. Nanjing Norm.
Univ. Nat. Sci. Ed. 23 (2000), no. 2, 5–8.
14
BIBLIOGRAPHY
379. Yong-Lin Chen and Xin Chen, Representation and
(2)
approximation of the outer inverse AT,S of a matrix A, Linear Algebra and its Applications 308
(2000), no. 1-3, 85–107.
380. Yonghong Chen, S. J. Kirkland, and M. Neumann,
Group generalized inverses of M -matrices associated with periodic and nonperiodic Jacobi matrices,
Linear and Multilinear Algebra 39 (1995), no. 4,
325–340.
381.
, Nonnegative alternating circulants leading
to M -matrix group inverses, Linear Algebra and its
Applications 233 (1996), 81–97.
382. Yonghong Chen and M. Neumann, M -matrix generalized inverses of M -matrices, Linear Algebra
and its Applications 256 (1997), 263–285.
383. Zi Kuan Chen, Finding the synthetic discriminant
function for any sample set by means of the twostep pseudoinverse method, J. Numer. Methods
Comput. Appl. 17 (1996), no. 1, 8–13.
384. E. W. Cheney, Introduction to Approximation Theory, McGraw–Hill Book Co., New York, 1966.
385. H. Chernoff, Locally optimal designs for estimating
parameters, Ann. Math. Statist. 24 (1953), 586–
602.
386. V. A. Cheverda and V. I. Kostin, r-pseudoinverses
for compact operators in Hilbert spaces: existence
and stability, J. Inverse Ill-Posed Probl. 3 (1995),
no. 2, 131–148.
387. J. S. Chipman, On least squares with insufficient
observations, J. Amer. Statist. Assoc. 54 (1964),
1078–1111, (see [1978]).
388.
, Specification problems in regression analysis, In Boullion and Odell [255], pp. 114–176.
389.
, “Proofs” and proofs of the Eckart-Young
theorem, Stochastic Processes and Functional
Analysis (Riverside, CA, 1994), Dekker, New York,
1997, pp. 71–83.
390.
, Linear restrictions, rank reduction, and biased estimation in linear regression, Linear Algebra
and its Applications 289 (1999), no. 1-3, 55–74.
391. J. S. Chipman and M. M. Rao, On the treatment
of linear restrictions in regression analysis, Econometrica 32 (1964), 198–209.
392.
, Projections, generalized inverses and quadratic forms, J. Math. Anal. Appl. 9 (1964), 1–11.
393. H. Chitwood, Generalized Green’s matrices for linear differential systems, SIAM J. Math. Anal. 4
(1973), 104–110.
394. Han Hyuk Cho, Regular fuzzy matrices and fuzzy
equations, Fuzzy Sets and Systems 105 (1999),
no. 3, 445–451.
395. K. K. Choong and J. Y. Kim, A numerical strategy
for computing the stability boundaries for multiloading systems by using generalized inverse and
continuation method, Engineering Structures 23
(2001), 715–724.
396. Shui-Nee Chow and Yun Qiu Shen, Bifurcations via
singular value decompositions, Appl. Math. Comput. 28 (1988), no. 3, part I, 231–245.
397. Ole Christensen, Frames and pseudo-inverses, J.
Math. Anal. Appl. 195 (1995), no. 2, 401–414.
398.
, Operators with closed range, pseudoinverses, and perturbation of frames for a subspace,
Canad. Math. Bull. 42 (1999), no. 1, 37–45.
399.
, Frames, Riesz bases, and discrete Gabor/wavelet expansions, Bull. Amer. Math. Soc. 38
(2001), no. 3, 273–291.
400. M. A. Christodoulou and P. N. Paraskevopoulos,
Solvability, controllability, and observability of singular systems, J. Optim. Theory Appl. 45 (1985),
no. 1, 53–72.
401. Moody T. Chu, On a numerical treatment for
the curve-tracing of the homotopy method, Numer.
Math. 42 (1983), no. 3, 323–329.
402. Moody T. Chu, R. E. Funderlic, and G. H. Golub,
On a variational formulation of the generalized singular value decomposition, SIAM J. Matrix Anal.
Appl. 18 (1997), no. 4, 1082–1092.
403. Kai Lai Chung, Elementary Probability Theory
with Stochastic Processes, Springer–Verlag, New
York, 1974.
404. G. Ciecierska, A note on another method of computing the Moore-Penrose inverse of a matrix,
Demonstratio Math. 31 (1998), no. 4, 879–886.
405. G. Cimmino, Inversione delle corrispondenze funzionali lineari ed equazioni differenziali, Rivista
Mat. Univ. Parma 1 (1950), 105–116.
406.
, Cramer’s rule without the notion of determinant, Atti Accad. Sci. Istit. Bologna Cl. Sci. Fis.
Rend. (14) 3 (1985/86), 115–138 (1987).
407.
, An unusual way of solving linear systems,
Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat.
Natur. (8) 80 (1986), no. 1-2, 6–7 (1987).
408.
, On some identities involving spherical
means, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis.
Mat. Natur. (8) 83 (1989), 69–72 (1990).
409. J. F. Claerbout, Geophysical Estimation by Example, Stanford Exploration Project, Stanford University, 2001, (on–line book).
410. J. A. Clarkson, Uniformly convex spaces, Trans.
Amer. Math. Soc. 40 (1936), 396–414.
411. J.-J. Climent, M. Neumann, and A. Sidi, A semiiterative method for real spectrum singular linear
systems with an arbitrary index, J. Comput. Appl.
Math. 87 (1997), no. 1, 21–38.
412. J.-J. Climent, N. Thome, and Yimin Wei, A
geometrical approach on generalized inverses by
Neumann-type series, Linear Algebra and its Applications 332/334 (2001), 533–540.
413. R. E. Cline, Representations for the generalized inverse of a partitioned matrix, J. Soc. Indust. Appl.
Math. 12 (1964), 588–600.
414.
, Representations for the generalized inverse
of sums of matrices, J. Soc. Indust. Appl. Math.
Ser. B. Numer. Anal. 2 (1965), 99–114.
415.
, Inverses of rank invariant powers of a matrix, SIAM J. Appl. Math. 5 (1968), 182–197.
BIBLIOGRAPHY
416.
417.
418.
419.
420.
421.
422.
423.
424.
425.
426.
427.
428.
429.
430.
431.
432.
, Elements of the Theory of Generalized
Inverses for Matrices. (umap modules and monographs in undergraduate mathematics and its applications project). the umap expository monograph
series), EDC/UMAP, Newton, Mass., 1979.
, Note on an extension of the MoorePenrose inverse, Linear Algebra and its Applications 40 (1981), 19–23.
R. E. Cline and R. E. Funderlic, The rank of a
difference of matrices and associated generalized
inverses, Linear Algebra and its Applications 24
(1979), 185–215.
R. E. Cline and T. N. E. Greville, An extension of
the generalized inverse of a matrix, SIAM J. Appl.
Math. 19 (1970), 682–688.
, A Drazin inverse for rectangular matrices,
Linear Algebra and its Applications 29 (1980), 53–
62.
R. E. Cline and R. J. Plemmons, l2 -solutions to
underdetermined linear systems, SIAM Rev. 18
(1976), no. 1, 92–106.
R. E. Cline and L. D. Pyle, The generalized inverse in linear programming. an intersecton projection method and the solution of a class of structured linear programming problems, SIAM J. Appl.
Math. 24 (1973), 338–351.
E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw–Hill Book
Co., 1955.
L. Collatz, Aufgaben monotoner Art, Arch. Math.
3 (1952), 366–376.
D. Constales, A closed formula for the MoorePenrose generalized inverse of a complex matrix of
given rank, Acta Math. Hungar. 80 (1998), no. 1-2,
83–88.
G. Corach, A. Maestripieri, and D. Stojanoff, Generalized orthogonal projections and shorted operators, Margarita mathematica, Univ. La Rioja,
Logroño, 2001, pp. 607–625.
, Oblique projections and Schur complements, Acta Sci. Math. (Szeged) 67 (2001), no. 1-2,
337–356.
, Generalized Schur complements and
oblique projections, Linear Algebra and its Applications 341 (2002), 259–272.
G. Corach, H. Porta, and L. Recht, Differential geometry of spaces of relatively regular operators, Integral Equations Operator Theory 13 (1990), no. 6,
771–794.
C. Corradi, A note on the solution of separable nonlinear least-squares problems with separable nonlinear equality constraints, SIAM J. Numer. Anal. 18
(1981), no. 6, 1134–1138.
, Computing methods for restricted estimation in linear models, Statistica (Bologna) 42
(1982), no. 1, 55–68, (see [645]).
R. W. Cottle, Manifestations of the Schur complement, Linear Algebra and Appl. 8 (1974), 189–211.
15
433. R. Courant, Differential and Integral Calculus, Interscience Publishers, New York, 1936, (translated
by E.J. McShane).
434. R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. I, Interscience Publishers, New
York, 1953, (First published in German 1924).
435. D. E. Crabtree and E. V. Haynsworth, An identity
for the Schur complement of a matrix, Proc. Amer.
Math. Soc. 22 (1969), 364–366.
436. D. F. Cudia, Rotundity, Convexity, Proc. Sympos. Pure Math. Vol. VII (V. Klee, Editor), Amer.
Math. Soc., Providence, R.I., 1963, pp. 73–97.
437. C. G. Cullen and K. J. Gale, A functional definition of the determinant, Amer. Math. Monthly 72
(1965), 403–406.
438. B. Cvetkov, A new method of computation in the
theory of least squares, Austral. J. Appl. Sci. 6
(1955), 274–280.
439. Hua Dai, An algorithm for symmetric generalized
inverse eigenvalue problems, Linear Algebra and its
Applications 296 (1999), no. 1-3, 79–98.
440. J. F. Dalphin and V. Lovass-Nagy, Best least
squares solutions to finite difference equations using the generalized inverse and tensor product
methods, Journal of the ACM 20 (1973), no. 2,
279–289.
441. J. Dauxois and G. M. Nkiet, Canonical analysis of
two Euclidean subspaces and its applications, Linear Algebra and its Applications 264 (1997), 355–
388.
442. D. F. Davidenko, On a new method of nu