Establishing secure connection… Loading editor… Preparing document…
Navigation

Fill and Sign the Ascent Agreement and Registration Form Frh Psdschools

Fill and Sign the Ascent Agreement and Registration Form Frh Psdschools

How it works

Open the document and fill out all its fields.
Apply your legally-binding eSignature.
Save and invite other recipients to sign it.

Rate template

4.5
53 votes
LM1575/LM2575/LM2575HV Series SIMPLE SWITCHER 1A Step-Down Voltage Regulator O W M .1 O W. WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C August W WW 00Y.CO .TW WW .100Y.C M.TW W M.T 2004 W WW 00Y.CO .TW W.1 Y.COM W .CO .TW W WW .100Y WW .100 M .1 .T OM W OM WW 00Y.CO .TW W W W .C Y.C W W WW .100Y .TW M.T .100 OM W.1 OM W WW 00Y.CO .TW WW .100Y.C M.TW W W Y.C W W LM1575/LM2575/LM2575HV O W M.T .100 OM W.1 WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W SIMPLE SWITCHER ® 1AWW Step-Down Voltage WWW 0Y.CO .TW Regulator O OM W.1 0Y.C M. W W WW .100Y.C M.TW M .10 10FeaturesT W. General Description O WW 00Y.CO .TW W CO W W .C Y. W W W .T 00 . W 00Y The W LM2575 series of regulators T monolithic integrated .1n 3.3V, 5V, 12V, 15V, and adjustable output.1 W versions OM W OM are W.1 allY.Cactive functions for a step-down n AdjustableM W WW 00Y.CO version output voltage range, 100Y.C WW . T W circuits that provide 0 the W W T W .T 1 1.23V to 37V. (57V for HV version) ±4% max over COM. 0 M (buck) switching regulator, capable of driving a 1A load with W. WW 00Y. W.1 Y.COM W CO .and load conditions W W W .TW 0Y excellent line and load0 These availWW .10 regulation.M.T devices are W M.T .10line W.1 Y.COM W O able in fixed output voltages CO of 3.3V, 5V, 12V, 15V, and an W Guaranteed 1A output current W Y.C WW .1 WW n Wide0input voltage.TW 40V up to 60V for HV 00 WW .100 . M.T .TW adjustable output version. Y .10 n M OM range, W O W number .Cexternal components, these Wn Requires only 4 external componentsWWW version.CO .TW .C Y W Y Requiring aWW minimum W .100 .TW 00Yof M.T .100 OM regulators are simple to use and include internal frequency n W kHz fixedCO 52 frequency internal oscillator WW W.1 Y.COM W W W 0Y.C M.TW Y. W W n TTL.shutdown capability, low power standby mode10 compensation and a fixed-frequency oscillator. WW .100 100 M.T O W. M.T W . WW efficiencyCO .TW The LM2575 series offers a high-efficiency replacement for CO WW .100Y.C M.TW W W Y. Wn High .100Y 0 W .T 0 M popular three-terminal linear regulators. M substantially reO W W n Uses readily available standard inductors O It W.1 W .CO .TW Y.C WW duces the size of the heat sink,0Y.C many cases no heat WW 00Y and current limit protection W.100 WW .10 and in M.TW M.T n Thermal1 sink is required. W. shutdown OM tested CO P+ Product Enhancement TW .CO Y.C WW .100Y. WW optimized for useW the nWW .TW . A standard seriesW inductors 00Y of .100 OM W .1 differentM.T with OM W LM2575 are available from several .CO manufacturers. WW .100Y.C M.TW WW W Y WW .100Y.C Applications OM.TW This feature greatlyW simplifies .100design ofM.T the switch-mode O W W n Simple high-efficiency step-down W WW .100Y.C M.T WW 00Y.CO .TW power supplies. WW .100Y.C M.T (buck) regulator W O W n Efficient pre-regulator for O W OM Other features include a guaranteed ± 4%.tolerance on outW.1 .C linear regulators WW .100Y.C M. WW .10 regulators WW .100Y C output W T load n On-card switching 0Y OM.TW put voltage within specified input voltages and M. O W W conditions, and ± 10% on the oscillator frequency. External converter WW .100Y.C M WW 00Y.CO .TW n Positive Wnegative 0Y.C (Buck-Boost) W to .TW W M .10 shutdown is included, featuring 50 µA (typical) standby curO W .1 OM WW 00Y.CO .TW WW .100Y.C M WW 00Y. current limitrent. The output switch includes cycle-by-cycleC W W W .T O W ing, as well as thermal shutdown W.1 protectionM for full OM W.1 O under WW .100Y.C W W Y.C WW .100Y.C M.TW fault conditions. W O W M.T .100 O W WW .100Y.C WW 00Y.CO .TW WW .100Y.C M.TW W W M .1 O W WW .100Y.C WW 00 Voltage Typical ApplicationW(Fixed OutputY.CO .TW WW .100Y.C M.TW W M .1 O W Versions) WW .100Y. WW 00Y.CO .TW WW .100Y.C M.TW W W O W OM W.1 WW .100Y WW .100Y.C M.TW WW .100Y.C M.TW W O W WW .100 WW 00Y.CO .TW WW .100Y.C M.TW W W O W OM W.1 WW .10 WW .100Y.C M.TW WW .100Y.C M.TW W O W WW .1 WW 00Y.CO .TW WW .100Y.C M.TW W W O W OM W.1 WW WW .100Y.C M.TW WW .100Y.C M.TW W O W WW WW 00Y.CO .TW WW .100Y.C M.TW W Note: Pin numbers are for the TO-220 package. O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C WW .100Y.C M.TW W O W WW WW .100Y.C M.TW O W WW .100Y.C M.TW O W WW .100Y.C W WW 01147501 SIMPLE SWITCHER ® is a registered trademark of National Semiconductor Corporation. © 2004 National Semiconductor Corporation DS011475 www.national.com LM1575/LM2575/LM2575HV O W M .1 O W. WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O 1 W M .Block Diagram and Typical Application O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W M .1 O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W O W WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM 3.3V, R2 = 1.7k W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW 5V, R2 = 3.1k O W O W O W 12V, R2 = 8.84k W WW .100Y.C M.TW WW .100Y.C M.TW 0Y.C M.TW W O W .10 15V, R2 = 11.3k O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW For ADJ. Version W O W O W OM W.1 R1 = Open, R2 = 0Ω WW .100Y.C M.TW WW .100Y.C M.TW 0 package. WW the TO-220 Y.C M.TW Note: Pin numbers are for O W .10 O W WW .100Y.C M.T WW 00Y.CO .TW WW .100Y.C M.TW W O W OM W.1 FIGURE WW .CO .TW WW .100Y.C M. W1. 00Y WW .100Y.C M.TW O W OM W.1 WW .100Y.C M WW 00Y.CO .TW WW .100Y.C M.TW O See Information table for completeW part Connection W W.1 Diagrams (XX indicates output voltage option.W Ordering O OM WW .100Y.C M WW .100Y.C M.TW number.) WW .100Y.C M.TW O W W .CO .TW WW .100Y.C WW 00Y.CO Bent, Staggered WW Straight Leads Leads W 00Y W .T 1 O W OM 5–Lead TO-220 (T) W.1 OM 5-Lead TO-220 (T) WW. WW .100Y.C W W 0Y.C M.TW Y.C W W .T 10 00 W O W. OM W.1 WW .100Y.C WW .100Y.C M.TW WW .100Y.C M.TW W O W O W WW .100Y. WW .100Y.C M.TW WW .100Y.C M.TW W O W O W WW .100Y WW .100Y.C Side View .TW WW .100Y.C MTop View TW Top View . OM W O WW 00 LM2575T-XX W LM2575T-XX or LM2575HVT-XX W W W Y.C WW .100Y.C M.Flow LB03 or W T Flow LB03 W LM2575HVT-XX See NS Package Number T05A W.1 M.T .100 WW See0Y.CO .Number T05D WW NS Package TW WW 00Y.CO .TW W W .10 M .10 WW W.1 Y.COM W WW 00Y.CO .TW W W WW .100 .T M .1 W.1 OM W WW 00Y.CO .TW WW W W Y.C W W W M.T .100 OM W.1 WW WW 00Y.CO .TW WW .100Y.C M.TW W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C WW .100Y.C M.TW W O W WW WW .100Y.C M.TW O W WW .100Y.C M.TW O W WW .100Y.C W WW 01147502 01147522 www.national.com 01147523 2 01147524 LM1575/LM2575/LM2575HV O W M .1 O W. WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW W O W .CO WW table 0 complete part WW 00Y.CO .TW (XX indicates output100Y.C WW . voltage option. SeeW .T Ordering Information W.10forY OM.TW W Connection Diagrams M M .1 WW 00Y.CO .TW number.) (Continued) WW .100Y.C M.TW WW 00Y.CO .TW W W M .1 O W M .1 O W O WW .100Y.C M.TW WW 0016–Lead DIPTW J) Y.C WW .100Y.C M.TW W 24-Lead Surface Mount (M) O W M. (N or .1 WW 00Y.CO .TW WW .100Y.C M.TW WW 00Y.CO .TW W W O W M .1 OM W.1 WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W O W WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W W.1 Y.COM W *No Internal Connection W WW .100Y.C M.TW WW .100Y.C M.TW 0 W .T O W M .10 O W Top View WW .100Y.C M.TW WW 00Y.CO 0Y. WW ConnectionC M.TW LM2575N-XX or LM2575HVN-XX.TW W *No Internal .10 O W M .1 O W See NS Package Number N16A WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C Top.View TW W LM1575J-XX-QML O M O or W LM2575M-XXM LM2575HVM-XX WW W.1 W Y.C See NS Package Number CO WW .See0NS.C M.TW M24B W 100 0 Y Package Number WW .100Y. J16A M.TW M.T W. W 1 Y.CO CO O W W WW .100Y. .TW .TW WW .100Y.C M.TWTO-263(S) W .100 OM W OM W O W .C W WW .100Y.C M.TW WW WW .100Y.C5-Lead .Surface-Mount Package .100Y TW M.T O W M O W WW .100Y.C M.T WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M. WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M WW .100Y.C M.TW WW .100Y.C M.TW Top View O W O W WW .100Y.C WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C WW .100Y.C M.TW WW .100Y.C M.TW W O W O W WW .100Y.C WW .100Y.C M.TW WW .100Y.C M.TW Side View W O W LM2575S-XX O WW .100Y. WW 00Y.Cor LM2575HVS-XX WW .100Y.C M.TW W See.1 Package Number TS5B .TW W O W OM W NS WW .100Y WW .100Y.C M.TW WW .100Y.C M.TW W O W WW .100 WW 00Y.CO .TW WW .100Y.C M.TW W Ordering Information W OM W.1 WW 00Y.CO .TW WW .10 WW .100Y.C M.TW High W Package NSC Standard Temperature W W.1 Y.COM W O WW .1 WW 0 Type Package Voltage Rating 0Y.C Voltage RatingWW W 0 Range .T W .T M .10 1 W OM Number (40V) W. (60V) WW 00Y.CO .TW WW W W Y.C W 0 LM2575HVT-3.3 W .T 5-Lead TO-220 T05A LM2575T-3.3 W M .10 OM W.1 WW WW 00Y.CO .TW WW .100Y.C M.TW Straight Leads LM2575T-5.0W M .1 LM2575HVT-5.0 O W LM2575T-12 LM2575HVT-12 WW 00Y.CO .TW WW .100Y.C M.TW W O W OM LM2575T-15 W.1 LM2575HVT-15 WW .100Y.C WW .100Y.C M.TW LM2575T-ADJ LM2575HVT-ADJ W O W WW 5-Lead TO-220 T05D LM2575T-3.3 Flow LB03 LM2575HVT-3.3 TW WW .100Y.C M.Flow LB03 O Bent and LM2575T-5.0 Flow LB03 W LM2575HVT-5.0 Flow LB03 WW .100Y.C M.TW Staggered Leads LM2575T-12 Flow LB03 LM2575HVT-12 Flow LB03 W .CO WW LM2575HVT-15 Flow LB03 00Y LM2575T-15 Flow LB03 W.1 LM2575T-ADJ Flow LB03 W LM2575HVT-ADJ Flow LB03 W 01147525 01147526 01147529 01147530 3 www.national.com LM1575/LM2575/LM2575HV O W M .1 O W. WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O O WW 0 WW .100Y.C M.TW WW Ordering InformationW(Continued) 0Y.C W Y.C .TW W M .1 O W M.T .100 WW 00Y.CO .TW WW .100Y.C M.TW WW 00Y.CO .TW NSC W Package Standard High W M .1 O Temperature WW W.1 TypeCOM W WW 00Y.CO .TW Voltage Rating 100Y.C . Package Voltage Rating W TW W WW .100Y M.Range W. M.T Number W.1 Y.COM W CO . (40V) (60V) W O W W .TW 00Y 0 WW WW .100Y.C MN16A .TW M.T 16-Pin Molded LM2575N-5.0 .10 LM2575HVN-5.0 −40˚C ≤ +125˚C W.1 Y.COM TJ ≤W W .CO .TW WW .100 WW 00Y.CO .TW .T WW DIP LM2575N-12 .100Y LM2575HVN-12 W OM W M .1 OM W WW .100Y.C M.TW WW 00Y.CO .TW LM2575N-15 WW .100Y.C LM2575HVN-15 TW W M. O W M .1 LM2575HVN-ADJ WW 00Y.CO .TW WW .100Y.C M.TW WW 00Y.CO .TW LM2575N-ADJ W W 24-Pin M24B LM2575M-5.0 W.1 LM2575HVM-5.0 O W M .1 OM CO WW .100Y.C M.TW WW W LM2575M-12W .100Y.C M.TW W Surface Mount 00Y. LM2575HVM-12 W O W M.T .1 W .CO .TW WW .100Y.C M.TW WW 00Y.CO .TWLM2575M-15 W W 00YLM2575HVM-15 W .1 O W M .1 OM LM2575M-ADJ WW LM2575HVM-ADJ WW .100Y.C M.TW WW 00Y.CO .TW 0Y.C M.TW W W 5-Lead TO-263 .1 TS5B M LM2575S-3.3 .10 LM2575HVS-3.3 O W WW 00Y.CO .TW WW .100Y.C M.TW WW 00Y.CO .TW SurfaceW Mount LM2575S-5.0 W LM2575HVS-5.0 O W M .1 OM W.1 LM2575HVS-12 W WW .100Y.C M.TW WW 00Y.CO .LM2575S-12 WW W 0Y.C M.T 0 W T O W M LM2575S-15 .1 O W.1 LM2575HVS-15 WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W LM2575S-ADJ O W W LM2575HVS-ADJ W W.1J16A Y.COM W .CO .T WW .100Y.C M.TW 16-Pin Ceramic W LM1575J-3.3-QML WW 00Y 0 W T O W M. .10 W.1 Y.COM W DIP WW .100Y.C M.TW WW 00Y.COLM1575J-5.0-QML WW W 0 T W M. .10 M.T .1 LM1575J-12-QML −55˚C W J ≤ +150˚C O ≤T WW 00Y.CO .TW WW .100Y.C M.TW WW 00Y.CO .TW W W LM1575J-15-QML O W M .1 OM W.1 WW .100Y.C M.T WW 00Y.CO .TW LM1575J-ADJ-QML WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M. WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C WW .100Y.C M.TW WW .100Y.C M.TW W O W O W WW .100Y.C WW .100Y.C M.TW WW .100Y.C M.TW W O W O W WW .100Y. WW .100Y.C M.TW WW .100Y.C M.TW W O W O W WW .100Y WW .100Y.C M.TW WW .100Y.C M.TW W O W WW .100 WW 00Y.CO .TW WW .100Y.C M.TW W W O W OM W.1 WW .10 WW .100Y.C M.TW WW .100Y.C M.TW W O W WW .1 WW 00Y.CO .TW WW .100Y.C M.TW W W O W OM W.1 WW WW .100Y.C M.TW WW .100Y.C M.TW W O W WW WW 00Y.CO .TW WW .100Y.C M.TW W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C WW .100Y.C M.TW W O W WW WW .100Y.C M.TW O W WW .100Y.C M.TW O W WW .100Y.C W WW www.national.com 4 LM1575/LM2575/LM2575HV O W M .1 O W. WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W WW 00Y.CO .TW WW 00Y.CO .TW WW 1) .100Y.C Minimum W Rating W .T ESD W Absolute Maximum Ratings (Note W OM W.1 M .1 OM W Y.C (C = 100W R = 1.5 kΩ) W .100Y.C M.TW W WW 00Y.CO .TW 2 kV W If W Military/Aerospace specified devices are required,100 M.T pF, . please contact the National Semiconductor Sales WW Office/ WW 00Y.CO .TW W.1 Y.COM W CO W Y.Lead Temperature W W WW .1 availability M.T Distributors for00 and specifications. M.T .100 (Soldering, OM W.1 260˚C O W WW 00Y.CO .T10 sec.) W WW .100Y.C M.TW WSupply 00Y.C W W Maximum Voltage W .T M .1 W.1 Y.COM .CO WW LM1575/LM2575 Y.CO 45V WW 00 W 0 WW .10Operating W .T Ratings W W.100Y OM.TW W .T OM LM2575HV W.1 63V W OM WW .100Y.C M.TW W W ≤ V ≤ +V W .100Y.C M.TW Y.C W Temperature Range W Input.100 .T −0.3V ON /OFF Pin O IN O W WW W Voltage OM W−55˚C ≤.TJ0≤ Y.C M.TW 0Y.C WW .10LM1575 M.TW Output Voltage to GroundY. 1 0+150˚C WW .100 C M.TW W O W LM2575/LM2575HV −40˚C .CO O (Steady State) W −1V W WW ≤ T.J1≤ +125˚C M.TW W W 00Y 0Y.C M.TW Y.C W W 00 .10 Supply Voltage O W M.T Power Dissipation W.1 .CO .CO Internally Limited WWW LM1575/LM2575 .TW WW .100Y.C M.TW W 40V 00Y 0Y W TW to +150˚C . Storage Temperature Range O W M−65˚C .10 W.1 Y.COM W 0Y WW .1060V.C M.TW WW 00Y O .TW 150˚C WW LM2575HV 0 Maximum Junction Temperature .C .T W M .10 O W M .1 WW 00Y.CO .TW WW .100Y.C M.TW WW 00Y.CO .TW W W LM2575-3.3, LM2575HV-3.3 LM1575-3.3, W.1 O W OM W.1 OM WW .100Y.C M.TW W Y.C WW .100Y.C M.TW Electrical Characteristics M.TW W O W .100 O W Specifications with standard type face areO TJ = 25˚C, and those with boldface type apply over full Operating Tempera- 00Y.C WW .1 WW 00Y.C for .TW .TW WW .100Y.C M.TW W ture Range . OM W M .1 W .C O W CO W WW .1 WW .100Y.LM1575-3.3 W LM2575-3.3 Units 00Y WW .100Y.C M.TW Symbol Parameter Conditions Typ M.T M.T W O W CO . O W WW .1 LM2575HV-3.3 (Limits) 00Y .TW WW .100Y.C M.TW WW .100Y.C M.TW OM W O W O Limit Limit W WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O (Note O 2) (Note 3) W W O W WW .100Y.C M.T WTest Circuit Figure 2 .TW Y.C WW .100Y.C M.TW SYSTEM PARAMETERS (Note 4) W 00 M O W WW 00Y.CO . W.1 VOUT Output Voltage 3.3 WV WVIN = 12V,Y.CO= 0.2ATW WW .100Y.C M.TW 0 ILOAD M. W .1 0 OM Circuit of Figure 2 3.267 3.234 V(Min) W W W.1 Y.CO Y.C WW 00Y.CO .TW W 00 W WW .100 M .TW M 3.366 .1 3.333 V(Max) W.1 .CO OM W W WW 00Y.CO .TW W W ≤ VIN 0Y.C 0.2A ≤.TW ≤ 1A 00Y W VOUT Output Voltage 4.75V 3.3 V W M .1 W.1 Y.COM .10≤ 40V, M ILOAD WW 00Y.CO 3.168/3.135 V(Min) W LM1575/LM2575 Circuit of FigureY.CO 3.200/3.168 W W WW 00 2 W W 100 W M.T M.T .1 W.1 Y 3.432/3.465 V(Max) WW. 0Y.CO 3.400/3.432 .CO O W W W Y.C I W WW .100 WW .10 M.T VOUT Output Voltage 4.75V ≤ VIN .≤ 00 0.2A ≤ M.T ≤ 1A 3.3 V 1 60V, LOAD W O WW 00Y.C W CO WW .100Y. 3.168/3.135 V(Min) W LM2575HV CircuitW Figure00Y. 3.200/3.168 .TW W of .1 2 C M.TW .1 OM W WW 00Y. W C W 3.416/3.450 0Y.3.450/3.482 W V(Max) CO W W .T 0 WW .100Y. .TW W.1 W.1 Y.COM W % η Efficiency VIN = 12V, ILOAD = 1A 75 OM W W .C WW .100Y W W W .TW 00Y M.T .100 W W.1 Y.COM W WW 00Y.CO .TW WW .100 W W W LM1575-5.0, LM2575-5.0, LM2575HV-5.0 M.T M .1 W .100 WW 00Y.CO .TW WW .10 Electrical Characteristics WWW 00Y.CO .TW W W .1 OM W.1 Specifications with standard type face are for TJ = 25˚C, and those OM WW .1 WW 00Y.C with boldface type apply over full Operating TemperaW WW .100Y.C M.TW W ture Range. W M.T .1 WW 00Y.CO UnitsW WW WW 00Y.CO .TW Symbol Parameter Conditions Typ LM1575-5.0 W LM2575-5.0 .T W M .1 W M .1 WW 00Y O .T WW WW 00Y.CO .TW WLM2575HV-5.0 .C (Limits) W W M Limit .1 OM Limit W.1 WW 00Y.CO .TW WW 3) 00Y.C M.TW W (Note .1 M (Note 2) .1 O W WW 00Y.CO .TW SYSTEM PARAMETERS (Note 4) Test Circuit Figure 2 WW .100Y.C W 1 . 5.0 OM W VOUT Output Voltage VIN = 12V, ILOAD = 0.2A W V WW WW .100Y.C M.TW Circuit of Figure 2 4.950 4.900 V(Min) O W WW .100Y.C M.TW 5.050 5.100 V(Max) WW 5.0 0Y.CO VOUT Output Voltage 0.2A ≤ ILOAD ≤ 1A, V W 0 W.1 LM1575/LM2575 8V ≤ VIN ≤ 40V 4.850/4.800 4.800/4.750 V(Min) WW Circuit of Figure 2 5.150/5.200 5.200/5.250 V(Max) VOUT Output Voltage 0.2A ≤ ILOAD ≤ 1A, LM2575HV 8V ≤ VIN ≤ 60V 4.850/4.800 4.800/4.750 V(Min) Circuit of Figure 2 5.175/5.225 5.225/5.275 V(Max) 5.0 5 V www.national.com LM1575/LM2575/LM2575HV O W M .1 O W. WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W O WW .100Y.C M.TW WW LM1575-5.0, W 0Y.C M.T Y.C WW LM2575HV-5.0 W W O W M.T LM2575-5.0, W.10 .100 O .CO .TW WW .100Y.C M.TW WWElectrical Characteristics (Continued)C WW .100Y. .TW 0Y W O W M .10 OM W Specifications with are for W apply .10 full Operating TemperaWW 00Y.CO standard type faceWW TJ = 25˚C,.C those.TWboldface typeW over 0Y.C M.TW W 0Y and M with W ture1Range. .10 O W M.T . WW 00Y.CO .Typ 0Y.C M WW .10LM2575-5.0 .TWUnits WW 00Y.CO .TW W Conditions TW Parameter LM1575-5.0 W Symbol O W M .1 OM W.1 W Y.C WW .LM2575HV-5.0M.T(Limits) WW 00Y.CO .TW WW .100Y.C M.TW 100 W W LimitCO M .1 O W Limit O W WW .100Y. .TW WW .100Y.C M.TW (Note 2) WW .100Y.C M.TW 3) W (NoteY.COM W W O W .CO 77 WW .100 Y.C WW .1 η W Efficiency W M.T% .TW VIN = 12V, ILOAD = 1A 00Y OM.TW 100 W M . W .CO .TW O W WW .100Y WW .100Y.C M.TW WW .100Y.C M.TW OM W O LM1575-12,Y.CO WW 0 W WW .100Y.C M.TW WW 00 LM2575-12, LM2575HV-120Y.C W W .TW M.T .1 O W Electrical Characteristics W.1 Y.COM W WW 00Y.CO .TW WW .100Y.C M W with 0 W and.1 with boldface type apply over full Operating Tempera-.TW W Specifications 10 standard type.T are for TJ = 25˚C, those M O W M face . ture Range W WW 00Y.CO .TW .CO .TW WW .100Y.C M.TW W. W 0Y W W M .10 W.1 Y.COM LM1575-12 CO Symbol Typ LM2575-12 Units WW .100Y.(Limits) .TW WWParameterCO .TW ConditionsW 0 Y. W .TW W 00 M LM2575HV-12 .10 OM W M .1 O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW Limit Limit W O W M .1 WW 00Y.CO (Note W 2) (Note 3) WW .100Y.C M.TW WW 00Y.CO .TW W .T W O W M .1 OM W.1 SYSTEM PARAMETERS (Note 4) Test Circuit Figure 2 WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W VOUT Output Voltage VIN = V W . O OM 25V, ILOAD = 0.2A WW 12 Y.CO W.1 WW .1V(Min)C M.TW 00Y W of W 11.88.TW 11.76 00 WW .100Y.C Circuit .TFigure 2 W V(Max) .CO M OM W.1 12.24 W W WW 00Y.CO .TW .T 00Y WW .100Y.C 12.12 .TW W W.1 V Y.COM M OM VOUT Output Voltage .1 0.2A ≤ ILOAD ≤ 1A, 12 W O W W .C W .C W W WW .100Y WW M. .100 LM1575/LM2575 .100Y 15V ≤ VIN .T ≤ 40V 11.64/11.52.T 11.52/11.40 V(Min) OM W OM WW 00Y.CO W Circuit Figure 2 12.36/12.48 WW .100Y.C M.TW12.48/12.60W V(Max) WW .100Y.C of M.TW OM W.1 VOUT Output Voltage W 0.2ACO ≤ ILOAD ≤ 1A, 12 WW 00Y.CO .TW . WW V .100Y.C M W W W 0Y W M.T .1015V ≤ V O≤ 60V LM2575HV V(Min) W.111.64/11.52 M 11.52/11.40 .CO WW .CO W . of WW CircuitCINFigure.TW Y WW .12.42/12.54 M.T12.54/12.66 W V(Max).100Y 00Y W O W M2 .100 O W1 WW .100Y.C WW VIN 0Y.COLOAD .= 1A η Efficiency = 15V, I 88 % W WW .100Y.C M.TW W T 0 W O W OM W.1 WW .100Y.C WW .100Y.C M.TW WW .100Y.C M.TW W O W LM1575-15, LM2575-15, LM2575HV-15 O W WW .100Y. WW .100Y.C M.TW WW .100Y.C M.TW Electrical Characteristics W W O W .CO .TW WW .100Y WW . apply over full Operating TemperaSpecifications with standard type W are for TJ .= 25˚C, and W with boldface type 100Y W face .100Y C M.T those W OM W ture Range . WW .100 WW 00Y.CO .TW WW .100Y.C M.TW W Symbol Parameter Typ LM1575-15 LM2575-15 Units WW O W O W.1Conditions M W WW .100Y.C M.TW (Limits) WW .100Y.C M.TW .10 LM2575HV-15 O W O WW W W .C Y.C Limit .TW W WLimit .100 WW .100Y .TW M W.1 OM W (Note 2) (Note WW 00Y.CO 3) .TW WW W W Y.C W 0 W W SYSTEM PARAMETERS (Note 4) Test CircuitW.10 2 Figure M.T OM W.1 WW W I 0= Y.CO .T15 WW .100Y.C M.TW V 00.2A M W VOUT Output Voltage VINW30V, LOAD = O W O W.1 W Y.C Circuit of Figure 2 0Y.C 14.85 W W WW .10 .TW 100 14.70 OM.T V(Min) . OM 15.15 WW 15.30 V(Max) W C Y. W WW .1 0Y.C M.TW .100 VOUT Output Voltage 0.2A ≤ ILOAD ≤ 1A, 0 15 V W WW 00Y.CO .TW 14.55/14.40 W 14.40/14.25 W LM1575/LM2575 18V ≤ VIN ≤ 40V V(Min) W M .1 .CO .TW15.45/15.60 Circuit of Figure W 15.60/15.75 V(Max) W2 W 00Y VOUT Output Voltage 0.2A ≤ ILOAD ≤ 1A, . 15 V W 1 Y.COM WW .100 LM2575HV 18V ≤ VIN ≤ 60V 14.55/14.40 14.40/14.25 V(Min) W Circuit of Figure W 15.525/15.675 15.68/15.83 V(Max) W2 η Efficiency www.national.com VIN = 18V, ILOAD = 1A 88 6 % LM1575/LM2575/LM2575HV O W M .1 O W. WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W LM1575-ADJ, OM LM2575-ADJ, LM2575HV-ADJ O W .1 W CO WW .100Y.C M.TW WW 00Y.C Electrical Characteristics WW .100Y. .TW W .TW O W M .1 OM Specifications with standard type face are for TJ= 25˚C,W those with boldface type apply over W Operating .Temperature W full .100Y C M.TW WW 00Y.CO .TW WW and.100Y.C M.TW W Range. O W W W.1 Y.COM W .CO .TW Y. WWLM2575-ADJC Units W WW Symbol W Parameter Conditions .100Y Typ LM1575-ADJ 0 W M.T .100 .T 0 M W WW 00Y.CO .TW W.1 Y.COM W CO WLM2575HV-ADJ (Limits) WW .100Y. .TW WW .100 M .1 M.T OM W Limit Limit WW 00Y.CO .TW W .C W CO W W 0Y Y. W TW 2) W (Note.3) . 0 W OM W1 M.T .100 W.1 Y.COM (Note W WW .100Y.C M.TW WW 00Y.CO Circuit Figure 2 WW SYSTEM PARAMETERS (Note 4) Test .TW .T 00 W O W M .1 W.1 Y.COM W VOUT FeedbackW Voltage Y.COIN = 12V, ILOAD = 0.2A W V 1.230 V WW .100Y.C M.TW W W 0 W T W M. .10 O W M.T .100 VOUT 5V 1.217 V(Min) WW 00Y.CO .1.217 WW .100Y.C M.TW WW 00Y.CO = .TW W TW W Circuit of Figure 2 1.243 W V(Max) O M W.1 Y OM 1.243 W.1 Y CO WW .100V .C M.TW 0 WW .11.230.C M.TW VOUT FeedbackW Voltage 00Y.0.2A ≤ ILOADW1A, ≤ 0 W . O W M≤T .1 O W W LM1575/LM2575 8V ≤O V 40V 1.193/1.180 V(Min) WW .100Y.C M.TW WW .100Y.C 1.205/1.193 .TW WW .100Y.C INM.TW OM VOUT = 5V, Circuit of Figure 2 1.255/1.267 1.267/1.280 W V(Max) .CO W WW .100Y WW 00Y.CO .TW .TW WW 1.2300Y.C M.TW VOUT Feedback W Voltage .1 0.2A ≤ ILOAD ≤ 1A, .10 W V Y.COM W M O W W 8VY.CO 60V W C WW V(Min)0 LM2575HV WW ≤V ≤ WW .100Y.1.205/1.193 W 1.193/1.180 M.T .10 M.T .100 =IN OM.T of Figure 2 W WW 00Y.CO .TW W VOUT .C Circuit W CO . 1.261/1.273 W 1.273/1.286 W W V(Max) Y 5V, .T WW .100= 12V, I M.T1A, V = 5VW 77 .100Y M .1 η Efficiency VIN % OM W LOAD = OUT WW 00Y.CO .TW W .C W CO W W W 0Y Y. W TW W M. .10 OM W.1 M.T .100 WW 00Y.CO .TW WW .100Y.C M.TW WW 00Y.CO .TW W W All Output Voltage Versions M O W OM W.1 W.1 Y.CO WW .100Y.C M.T W Electrical Characteristics0 W WW .100Y.C M.TW W .T O 10 O W Specifications with standard type face .are for TJCOM and those with boldface type apply.over full Operating Tempera- W . = for the 3.3V, W WW V00= 12V25˚C, .TW 5V, and Adjustable version, V = 25V.forW 12V version,W .100Y.C M. WW .100Y C M T the W ture Range. Unless otherwise specified, 1 IN Y IN O W M . O W and VIN = 30V for the 15V version. ILOAD = 200 mA.O WW .100Y.C M WW 00Y.C W WW .100Y.C M.TW W O M.T .1 Symbol Parameter Typ WLM1575-XX O LM2575-XX Units WW Y.C .CO . W WW 00YConditionsTW WW .100Y.C LM2575HV-XX (Limits) .TW W .100 M OM W M .1 WW Limit Y.CO Limit W WW .100Y.C WW 00Y.CO .TW W W M.T .100 O W W.1 Y.COM W WW 00Y.CO (NoteTW (Note 2) WW .100Y.C W . 3) WW .100 .T 1 OM W. DEVICE PARAMETERS OM WW 00Y.C W WW100/500 0Y.C 100/500 W nA W .T 0 0Y. Version .TW WW (AdjustableC MOnly) .1 0 Ib Feedback Bias Current VOUT = 5V 50 M .1 WW 00Y. W.1 Y.CO WW 00Y.CO .TW kHz W fO Oscillator Frequency (NoteWW 13) 52 W .TW 00 W.1 W.1 Y.COM W W.1 Y.COM W 47/43 47/42 kHz(Min) W WW .100Y W W W .T 100 00 M.T kHz(Max) W 58/62 . W.1 Y.COM W CO WW 00Y.58/63 .TW WW .100 W 5) 00 W W VSAT Saturation Voltage IOUT = 1A (Note 0.9 V .1 W M.T .1 OM WW 001.2/1.4 W Y.C WW .10 WW 00Y.CO .TW 1.2/1.4 V(Max) W .T W W M .1 OM % W.1 DC Max Duty Cycle (ON) (Note 6) WW .1 WW 00Y.CO .TW 98 WW .100Y.C M.TW W W M .1 93 93 O %(Min) W .CO .TW WW WW WW .100Y.C M.A W T ICL Current Limit Peak Current W (Notes 5, 13)00Y 2.2 W M .1 W CO A(Min)W WW WW 00Y.CO .TW 1.7/1.3 W 1.7/1.3 . W .T 00Y W M .1 OM W.1 WW 00Y.CO .TW 3.0/3.2 WW 3.0/3.2 Y.C A(Max) W 0 .T 0 W Output =10V IL Output Leakage (Notes 7, 8) 2 2 mA(Max) W.1 Y.COM OM W. WW .100 WW =.100Y.C M.TW Current Output −1V 7.5 mA W O WW 0 Output = −1V 0Y.C mA(Max) W 30 WW 30 W M.T .1 IQ Quiescent Current (Note 7) mA WW 00Y.CO 5 .TW W 1 10/12 10 mA(Max) OM W. WW .100Y.C 50 ISTBY Standby Quiescent ON /OFF Pin = 5V (OFF) µA Current 200/500 200 µA(Max) WW W 7 www.national.com LM1575/LM2575/LM2575HV O W M .1 O W. WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW All Y.CO .TW WW .100Y.C M.TW W O W .100 Output Voltage Versions O W OM WW .100Y.C M.TW WWElectrical Characteristics (Continued)C WW .100Y. .TW 0Y.C M.TW W O W .10 OM Specifications with are W WW 00Y.CO standard type faceWW TJ = 25˚C,.C those.TWboldface typeW over 0Y.C M.TW W specified, Vfor= 12V00Y and M with AdjustableW apply V.10 full Operating TemperaW ture1Range. Unless .T version, IN = 25V forO 12V version, the .1 for the 3.3V, 5V, and IN W M otherwise O W. WW 0 30V for 15V version. ILOAD = 200 mA. 0Y.C W WW .100Y.C M.TW Wand VIN = Y.CO the .TW W W M.T .1 O W M .100 Symbol Parameter LM1575-XX 0Y.C LM2575-XX TW Units WWConditions O .TW Typ WW Y.C WW 00Y.CO .TW W 10 LM2575HV-XX (Limits) 00 W M. . M .1 W O W CO OM W.1 WW .100Y.Limit M.TW WW .100Y.C M.TW WW .100Y.C M.TW Limit O W O W O W (Note 2) (Note WW .100Y.C 3) M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W DEVICE PARAMETERSO WW .100Y.C M.TW WW 00Y.C W WW .100Y.C M.TW O θJAW Thermal Resistance .T T Package, JunctionW Ambient (Note 9) to 65 W M .1 O WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M W θJA W T Package, Junction to Ambient (Note 10) .T 45 ˚C/W O WW 00Y.CO .TW W.1 Y.COM TW WW 0 θJC Package, Junction to Case 0Y.C 2 W W W WW .100 .T 1 M.T85 OM W.1 θJA to Ambient (Note O OM N Package, JunctionWW. W .C 11) .TW .C Y WW .100Y.C M.TW W W W W .T 00Y .100 θJA 11) O W W.1 Y.COMM Package, Junction to Ambient (NoteCOM 100 W WW 00Y. 12) 37 WW .100Y.C M.TW W W .T θJA S .TW Package, Junction to Ambient (Note W O W M .100 OM W.1 ON /OFF CONTROL Test Circuit Figure 2W WW .100Y.C M.TW WW 00Y.CO .T WW .100Y.C M.TW W O W W VIH ON /OFF Pin Logic COM = 0V VOUT 2.2/2.4 2.2/2.4 V(Min) W.1 .CO1.4 .TW WW .100Y.C M.TW WW WW .100Y. VOUT .= Nominal Output Voltage .100Y TW VIL Input Level 1.2 1.0/0.8 V(Max) W M OM 1.0/0.8 W .CO W CO WW .100YµA M.TW W WW .100Y.C 12 M.TW IIH ON WWPin Input0Y. ON /OFF Pin = 5V (OFF) /OFF M.T .10 O W WW 00Y.CO .TW Current WW 30 µA(Max) .CO .TW W30 WW .100Y.C M.TW 0Y W W.1 µA .COM .10 ONOM Pin = 0V (ON) IIL /OFF 0O W W WW .100Y WW .100Y.C M.TW WW .100Y.C M.TW M.T 10 µA(Max) O 10 W O WW 00Y.CO . W .C Y W W WW .TW WW .100Y.C M which .1 Note 1: Absolute Maximum Ratings indicate limits beyond .T damage to the device may occur. Operating Ratings indicate conditions for which the device is 100 OM OM O performance limits. For guaranteedW. WW 0 intended to be functional, but do Wguarantee specific not .C W specifications and test conditions, see the Electrical Characteristics. 0Y.C W .C Y W W W WW .100Y Note 2: All limits guaranteed at room temperature (standard .T face) and at temperature extremes (bold type face). All limits are used to calculateW.1 Average M.T .100 OM OM type WW 00Y.CO .TW Outgoing Quality Level, and all WW production tested. are 100% .C WW .100Y.C M W Y W W .T Note 3: All limits guaranteed at room temperature (standard type face) and at temperature extremes (bold type face). All room temperature limits areW .100 OM W.1 OM W 100% 00Y.CO production tested. All limits at temperature extremes C guaranteedW correlation using standard Statistical Quality Control (SQC) methods. W via WW 00Y. are WW .100Y.C M.TW W .1 .T Note 4: External components such as the 1 diode, inductor, system WW W. catch test .circuit,M input and output capacitors can in systemY.CO sectionWElectrical Characteristics. 00Y.CO WWaffect0switching regulatorT of performance. When the 1 CO systemTW W LM1575/LM2575 is used as shown W Figure 2 Y as W in the .100 . performance will beW shown .1 0 parametersM. W. Note 5: Output (pin 2) sourcing current. No diode, inductor or capacitor connected to output pin. W OM W CO W W Y. WW .100Y.C Woutput and 0Y.C to 0V. .TW W W Note 6: Feedback (pin 4) removed from M.T .100 W .10connected OM Note 7: Feedback (pin 4) removed fromWWand connected to +12V for the Adjustable, 3.3V, and 5V versions, and +25V for the 12V W 15V versions,WW output to force Y. WW 00Y.CO .T and C . W W .100 .TW the output transistor OFF. 1 00Y M W. OM WW W.1 .CO .TW Y Note 8: VIN = 40V (60V for the high voltage version). WW 00Y 0 heat M.T lead WW (no externalY.Csink) for the 5W TO-220 package mounted .vertically, with ⁄ inch leads in a socket, or onW W.100 .10 Note 9: Junction to ambient thermal resistance a PC W 1 Y.COM W O W WW .100 board with minimum copper area. WW .100 WW .100Y.C M.TW M.T Note 10: Junction to ambient thermal resistance (no external heat sink) for the 5 lead TO-220 package mounted vertically, with Cinch leads soldered to a PC board WW ⁄ O W O W W W containing approximately 4 square inches of copper area surrounding the leads.TW WW .100Y. WW .100Y.C M. .10 M.T W Note 11: Junction to ambient thermal resistance with approximately 1 square inch of pc board copper surrounding the leads. CO Additional copper area will lower O WW W W W .C software.TW Y. W W thermal resistance further. See thermal model in W W Switchers.made Y 00 Simple M. M.T .100 W.1 W 1 Yreduced Note 12: If the TO-263 package is used, the thermal resistance can be .CO by increasing the PC board copperW thermally connected to the W W area 00Y.CO .T package: Using WW Wsquare inch0 copper area, θJATW and with Wor more square inches of copper area, θJA is 32˚C/W. W 1.6 0.5 square inches of copper area, θJA is 50˚C/W; with 1 . is 37˚C/W; 0 of W OM W.1 W.1 Y COM Note 13: The oscillator frequency reduces to approximately 18 kHz in the.event of an output short or an overloadW causes the regulated output voltage to drop Wself protection feature lowers.theW power dissipation of the10by Y.C the minimum duty cycle WW W which . IC 0 lowering M.TW 0 W approximately 40% from the nominal output voltage. This M T average .10 O W from 5% down to approximately 2%. WW 00Y.CO .TW WW .100Y.C M.TW Wof military .RETS/SMD. M Note 14: Refer to RETS LM1575J for current revision O W O W1 WW .100Y.C WW .100Y.C M.TW W O W WW WW .100Y.C M.TW O W WW .100Y.C M.TW O W WW .100Y.C W WW 12 12 www.national.com 8 LM1575/LM2575/LM2575HV O W M .1 O W. WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C of Figure 2) .TW W Typical1Performance Characteristics (Circuit M O W OM W. WW 00Y.CO .TW WW .100Y.C M.TW 0Y.C M.TW WW .10Normalized Output Voltage W Line Regulation O W OM W.1 WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W O W WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W Dropout WW .100Y.C M.TW WW Voltage O .TW Y.C WW .100Y.C Current Limit .TW W O W M .100 OM W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.T WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M. WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M WW .100Y.C M.TW WW .100Y.C M.TW O W W .CO .TW WW .100Y.C WW 00Y.CO .TW WW .Standby 00Y W O W .1 OM W1 OM Quiescent Current W Quiescent Y.C WW .100Y.C W W Y.C WW .100Current M.TW W .T 00 W O W OM W.1 WW .100Y.C WW .100Y.C M.TW WW .100Y.C M.TW W O W O W WW .100Y. WW .100Y.C M.TW WW .100Y.C M.TW W O W O W WW .100Y WW .100Y.C M.TW WW .100Y.C M.TW W O W WW .100 WW 00Y.CO .TW WW .100Y.C M.TW W W O W OM W.1 WW .10 WW .100Y.C M.TW WW .100Y.C M.TW W O W WW .1 WW 00Y.CO .TW WW .100Y.C M.TW W W O W OM W.1 WW WW .100Y.C M.TW WW .100Y.C M.TW W O W WW WW 00Y.CO .TW WW .100Y.C M.TW W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C WW .100Y.C M.TW W O W WW WW .100Y.C M.TW O W WW .100Y.C M.TW O W WW .100Y.C W WW 01147532 01147533 01147534 01147535 01147536 01147537 9 www.national.com LM1575/LM2575/LM2575HV O W M .1 O W. WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W O WW .10 .C M.TW WW Typical PerformanceWW W 0Y.C M.TW of Figure 2) (Continued) 0Y Y.C W Characteristics (Circuit .10 O W M.T .100 WW 00Y.CO .TW WW .100Y.C M.TW WW 00Y.CO .TW W W W M .1 OM Switch SaturationO W.1 WW Voltage Y.C M.TW WW 00Y.CO Oscillator Frequency W 00 WW .100Y.C M.TW W W.1 Y.CO M.T .1 O W O W WW .100 .TW WW .100Y.C M.TW WW .100Y.C M.TW OM W O W O W WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W O W WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W O W WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O Minimum Operating Voltage W OM W.1 Efficiency WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W O W WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.T WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M. WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C Quiescent Current Y.C Feedback Voltage WW .100Y.C M.TW WW .100 .TW W O W vs Duty Cycle vs Duty Cycle OM W WW .100Y.C WW .100Y.C M.TW WW .100Y.C M.TW W O W O W WW .100Y. WW .100Y.C M.TW WW .100Y.C M.TW W O W O W WW .100Y WW .100Y.C M.TW WW .100Y.C M.TW W O W WW .100 WW 00Y.CO .TW WW .100Y.C M.TW W W O W OM W.1 WW .10 WW .100Y.C M.TW WW .100Y.C M.TW W O W WW .1 WW 00Y.CO .TW WW .100Y.C M.TW W W O W OM W.1 WW WW .100Y.C M.TW WW .100Y.C M.TW W O W WW WW 00Y.CO .TW WW .100Y.C M.TW W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C WW .100Y.C M.TW W O W WW WW .100Y.C M.TW O W WW .100Y.C M.TW O W WW .100Y.C W WW 01147539 01147538 01147540 01147542 www.national.com 01147541 01147543 10 LM1575/LM2575/LM2575HV O W M .1 O W. WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W W WW 00Y.CO .TW Characteristics0(Circuit of Figure 2) (Continued)W .100Y.C M.TW WW .10 Y.C M.TW W Typical1Performance O W O W OM W. WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O Maximum PowerWW Dissipation .CO W O W WW 00Feedback Pin Current .TW W Y.C WW .100Y.C M.TW(TO-263) (See (Note 12))00Y W W.1 Y.COM W M.T .1 O W O W WW .100 WW .100Y.C M.TW WW .100Y.C M.TW M.T W O WW 00Y.CO .TW W CO W WW .100Y. .TW WW .100Y.C M.TW M .1 OM W WW 00Y.CO .TW W .C W CO W W W 0Y Y. W TW W M. .10 OM W.1 M.T .100 WW 00Y.CO .TW WW .100Y.C M.TW WW 00Y.CO .TW W W O W OM W.1 W.1 Y.COM W WW .100Y.C M.TW W WW .100Y.C M.TW W O W M.T .100 O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W M .1 O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O WW 00Y.CO .TW W W WW .100Y.C M.TResponse W 0Y.C M.TW WW Waveforms M .1 0 Switching Load Transient WW 00Y.CO .TW W.1 Y.CO WW 00Y.CO .TW W W W W W M .1 OM W.1 M.T .100 WW 00Y.CO .TW WW .100Y.C M.TW WW 00Y.CO .TW W W O W OM W.1 W.1 Y.COM W WW .100Y.C M.T W WW .100Y.C M.TW W O W M.T .100 O W WW .100Y.C M. WW 00Y.CO .TW WW .100Y.C M.TW W O W M .1 O W WW .100Y.C M WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C WW .100Y.C M.TW WW .100Y.C M.TW W O W O W WW .100Y.C WW .100Y.C M.TW WW .100Y.C M.TW W O W O W WW .100Y. WW .100Y.C M.TW WW .100Y.C M.TW VOUT = 5V W O W O W A: Output Pin Voltage, 10V/div WW .100Y WW .100Y.C M.TW WW .100Y.C M.TW W B: Output Pin Current, 1A/div O W WW .100 WW 00Y.CO .TW WW .100Y.C M.TW C: Inductor Current, 0.5A/div W W O W OM W.1 D: Output Ripple Voltage, 20 mV/div, WW .10 WW .100Y.C M.TW WW .100Y.C M.TW AC-Coupled W O W Horizontal Time Base: 5 µs/div WW .1 WW 00Y.CO .TW WW .100Y.C M.TW W W M W.1 WW ground O .TW CO Y.C WW indicated) WW Test Circuit and Layout Guidelines .100Y.Single-point W be used for best W.or00Whenplane con.T grounding (as W 1 W M OM the struction should results. using WW WW 00Y.CO version, physically locate the programming resis- W As in any switching regulator, layout is very important. RapWW .100Y.C M.T Adjustable .TW W O idly switching currents associated with wiring inductance .1 W OM W tors near the regulator, to keep the sensitive feedback wiring W WW .100Y.C M.T generate voltage transients which can cause problems. For WW .100Y.C M.TW short. O W O minimal inductance and ground loops, the length of the leadsW WW .100Y.C WW .100Y.C M.TW indicated by heavy lines should be kept as short as possible. W O W WW WW .100Y.C M.TW O W WW .100Y.C M.TW O W WW .100Y.C W WW 01147528 01147505 01147506 01147507 11 www.national.com LM1575/LM2575/LM2575HV O W M .1 O W. WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW Test.CO .TW Layout Guidelines (Continued) Y Circuit and WW .100Y.C M.TW W O W M .100 O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W M .1 O W WW .100Y.C M.TW WW 00Y.CO .TW WW Fixed0Y.C VoltageW Output M.T Versions W .10 O W M .1 WW 00Y.CO .TW WW .100Y.C M.TW WW 00Y.CO .TW W W O W M .1 OM W.1 WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W O W WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W O CIN — 100 µF, 75V, Aluminum Electrolytic WW .100Y.C M.TW WW 25V, Aluminum ElectrolyticW Y.C WW .100Y.C M.TW .T COUTW 330 µF, 100 — O W . O W OM D1 — Schottky, 11DQ06 Y.C WW .100Y.C M.TW WW 00 WW .100Y.C M.TW WµH, PE-52627 (for 5V in, 3.3V out, use 100 µH, PE-92108) .TW O W M .1 L1 — 330 O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M WW .100Y.C M.TW Adjustable Output Voltage Version .TW O W O W O W WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.T WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M. WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C WW .100Y.C M.TW WW .100Y.C M.TW W O W O WW .100Y.C WW WW .100Y.C M.TW Wand 5k. .100Y.C M.TW where VREF = 1.23V, R1 between 1k W O W O W WW .100Y. R1 — 2k, 0.1% WW .100Y.C M.TW WW .100Y.C M.TW W O R2 — 6.12k, 0.1% W O W WW .100Y WW .100Y.C M.TW Note: Pin numbers are for the TO-220 package. WW .100Y.C M.TW W O W WW .100 WW 00Y.CO .TW WW .100Y.C M.TW W W O W FIGURE 2. OM W.1 WW .10 WW .100Y.C M.TW WW .100Y.C M.TW W O W WW .1 WW 00Y.CO .TW WW .100Y.C M.TW W W O W OM W.1 WW WW .100Y.C M.TW WW .100Y.C M.TW W O W WW WW 00Y.CO .TW WW .100Y.C M.TW W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C WW .100Y.C M.TW W O W WW WW .100Y.C M.TW O W WW .100Y.C M.TW O W WW .100Y.C W WW 01147508 01147509 www.national.com 12 LM1575/LM2575/LM2575HV O W M .1 O W. WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW 00Y.CO .TW 0Y. Procedure WW DesignC M.TW W LM2575 Series M Buck Regulator W.10 O W .1 O WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W PROCEDURE (FixedM O W O EXAMPLE (Fixed Output Voltage Versions) W.1 Y.CO Output Voltage Versions) W WW . (Max) C WOUT = Regulated OutputTW (3.3V, 5V,W or 100Y.C VOUTTW VIN(Max) = 20V ILOAD100Y.= 0.8A M.TW W 12V, . . = 5V Given: V Given: M W O W M. Voltage .100 WW 00Y.CO .TW 15V) VIN(Max) = MaximumO WW .100Y.C M.TW WW 00Y.C Input Voltage ILOAD(Max) = W W W Load .Current .T 1 W M Maximum W.1 Y.COM .CO WW .100 guide M.TW WW 00Y.CO SelectW correct Inductor WW .100Inductor M.TW (L1) A. Use the selection Y W 1. Inductor Selection (L1) A. M.T the O W .1 W 1. Y.CO Selection value selection guideY.C Figures 3, 4, 5, 6 (Output W shown in Figure 4. B. From the selection guide, the WW .100Y.C M.TW WW 00 fromO .TW W .TW W 100 M . O voltages of 3.3V, .1 12V or 15V respectively). For other WW inductance O intersected by the 20VWW and W5V, Y.COM W 0Y.C Y.C area .TW W line From0.8A line is W 00C. Inductor value required is 330 µH. W.10the table OM.T 0 WW see .10design procedureW the adjustable T for output voltages, the L330. M. W.1 Y.COM W .C O W WW .100 version. B. WWthe inductor .C selection guide, identify W in Figure 9, choose AIE 415-0926, Pulse Engineering Y From .TW Yvalue .TW W .T .100 or RL1952. OM W M VIN(Max) and .100 OM W the inductance W PE-52627, O WW .100Y.C M.TW W region intersected by .TW Y.C WW .100Y.C M.TW and ILOAD(Max), W note the 00 O 1 inductor code for that region. C. W . O W OM WW .100Y.C M.TW WW 00Y. the Identify the inductor value from C inductor W code, and WW .100Y.C M.TW W .T O W .1 O W select an appropriate inductor from OM WW .100Y.C M.TW WW 00Y.C the table shown in WW .100Y.C M.TW W .TW Figure 9. Part numbers.are listed for three inductor O W O W W 1 Y.COM rated WW .100Y.C M.TW manufacturers. WW The inductor chosen must beTW for WW .100Y.C M.TW O W M. .100 O W operation at the LM2575 switching frequency (52 kHz) and WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W1.15 x ILOAD. For additional inductor for a current rating of O W O W OM W.1 WW .100Y.C M.TW information, see the inductor section 0Y.CApplication Hints WW .100Y.C M.TW WW .10 in the M.TW O W O W section of this data sheet.CO WW .100Y.C M.TW WW 00Y. W WW .100Y.C M.TW W T O value 2. Output Capacitor Selection (COUT) A. TheOM. of the 2. Output W Capacitor Selection (COUT) A. COUT = 100 µF W .1 W .CO .TW Y.C W . defines theW WW WW inductorC output capacitor together with the 00Y to W µF standardY 470 00 aluminum electrolytic. B. Capacitor W.100 W T M.T . .1regulator loop. For W.1 voltageCOM= 20V. .CO .T OM W dominate pole-pair of the switching WW .100Y WW .100Y. ratingM.TW WW .100Y.C voltage, W T OM W stable operation and an acceptable output ripple OM. O WW 00Y.C W WW .100Y.C M. WW 00Y.C between W W (approximately 1% of the output voltage) a value W .T M.T .1 O W W.1 Y.COM W 100 µF and 470 µF is recommended. B. The capacitor’s WW 00Y.CO .TW WW .100Y.C M W W W T M .1 O W . 00 voltage rating should be at least 1.5 times1greater than M. the WW 00Y.CO .TW WW .100Y.C M WW of0at Y.CO is .TW W output voltage. For a 5V regulator, a rating 0 least 8V M W O W .1 OM W.1 appropriate, and a 10V or 15V rating is recommended. WW .100Y.C WW 00Y.CO .TW WW .100Y.C M.TW W O W .1 Higher voltage electrolytic capacitors generally have lower M O W WW .100Y.C WW 00Y.CO .TW WW .100Y.C M.TW ESR numbers, and for this reason W it may be necessary to W M O W W.1 select a capacitor rated for a higher voltage than would O WW .100Y.C WW .100Y.C M.TW WW .100Y.C M.TW W normally be needed. O W .C WW .100Y. WW current O 3. .Catch Diode Selection (D1)1A.0ForC example, a 1A WW . 0 Y. this M.TW TW 3. Catch Diode Selection (D1) A. TheW catch-diode 00Y W O W OM W.1 WW .100Y rating must be at least 1.2 times greater than the maximum C currentW WW .1 a Y.C M T SR103 WW .100Y. T rating is adequate. B. Use 0030V 1N5818 .or W W M. O load current. Also, if the power supply design must Schottky diode, of WW WW .100 WW haveY.CO .TW inor any Wthe suggested fast-recovery W 0Y.C M.T W withstand a continuous output short, the diode should 100 diodes shown Figure 8. .10 W OM W. WW 00Y.CO .TW WW .10 a current rating equal to the maximum currentW of the 0Y.C limit W W W .T 10 W M OM W.1 LM2575. The most stressful condition for this diode is.an WW .1 WW 00Y.CO .TW WW .100Y.C M.TW W overload or shorted output condition. B. The reverse voltage W O W OM W.1 WW rating of the diode should be at least 1.25 times the WW .100Y.C M.TW WW .100Y.C M.TW W W maximum input voltage. . O WW WW 00Y.CO .TW WW aluminumC M.TW 00Y electrolytic W 4. Input Capacitor (CIN) An aluminum or tantalum .1 4. Input Capacitor (CIN) A 47 µF, 25V .1 O W OM Y.C WW 0capacitor locatedW the inputWW electrolytic bypass capacitor located close to the regulator is and ground pins provides .TW 0Y.C M.T near W 100 OM W. W.1 sufficientO needed for stable operation. bypassing. WW .100Y.C WW .100Y.C M.TW W O W WW WW .100Y.C M.TW O W WW .100Y.C M.TW O W WW .100Y.C W WW 13 www.national.com LM1575/LM2575/LM2575HV O W M .1 O W. WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW W O W .CO .TW WW WW 00Y.CO .TW 0Y. WW GuidesC (ForM.TW Mode Operation) .100Y W Value Selection W.10 OM 1 W .Inductor M O Continuous W W Y.C WW .100Y.C M.TW WW 00Y.CO .TW W W M.T .100 O W W.1 Y.COM W WW 00Y.CO .TW WW .100Y.C M.TW W W W M .1 O W M.T .100 WW 00Y.CO .TW WW .100Y.C M.TW WW 00Y.CO .TW W W O W M .1 OM W.1 WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W O W WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O FIGURE 5. LM2575(HV)-12 W W.1 3. .COM W WW .100Y.C M.TW WW .100Y.C M.TW WWFIGURE 0YLM2575(HV)-3.3 .T 0 O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.T WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M. WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C WW .100Y.C M.TW WW .100Y.C M.TW W O W O W WW .100Y.C WW .100Y.C M.TW WW .100Y.C M.TW W O W O W Y. WW .100Y. WW FIGURE 6.C M.TW WW .100 .C M.TW FIGURE 4. LM2575(HV)-5.0 Y 100 LM2575(HV)-15 W O W. O W WW .100Y WW .100Y.C M.TW WW .100Y.C M.TW W O W WW .100 WW 00Y.CO .TW WW .100Y.C M.TW W W O W OM W.1 WW .10 WW .100Y.C M.TW WW .100Y.C M.TW W O W WW .1 WW 00Y.CO .TW WW .100Y.C M.TW W W O W OM W.1 WW WW .100Y.C M.TW WW .100Y.C M.TW W O W WW WW 00Y.CO .TW WW .100Y.C M.TW W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C WW .100Y.C M.TW W O W WW WW .100Y.C M.TW O W WW .100Y.C M.TW O W WW .100Y.C W FIGURE 7. LM2575(HV)-ADJ WW 01147512 01147510 01147513 01147511 01147514 www.national.com 14 LM1575/LM2575/LM2575HV O W M .1 O W. WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW W O W .CO .TW WW WW 00Y.CO Selection Guides (For 00Y.C ModeW W WW .1 Continuous M.T Operation) (Continued) .100Y W Inductor Value M.T OM W .1 WW 00Y.CO .TW WW .100Y.C M.TW WW 00Y.CO .TW W W M O W PROCEDURE (Adjustable Output Voltage Versions) .1 EXAMPLE (Adjustable Output Voltage Versions) W.1 Y.COM W WW 00Y.CO .TW WW I .100Y.C 1A F =.TW W = Regulated OutputT W= W Given: VOUT 100 Given: VOUT LOAD M. Voltage VIN(Max) . W.1 52 .COM = 10V VIN(Max) = 25V W (Max) =COM W Maximum Input Voltage.CO (Max) = Maximum Load W WW .100Y. WW 00Y ILOAD .TW 0YkHz M.TW W 0 W M.T Current F = Switching Frequency (Fixed at 52 kHz) W.1 Y.CO WW 00Y.CO .TW W.1 Y.COM W W 0 WW .TW WW .1 and R2) 1. Programming .Output Voltage (Selecting R1 and R2, as .10 100 M.T OM W 1.Programming Output Voltage (Selecting R1 0Y.COM W O WW 0 W2 ) UseY.Cfollowing formula to select the .C W W shown in Figure W .TW 00Y WW .100 the M.T .1 .TW W.1 Y.COM W appropriate resistor values. OM WW 00Y.CO .TW W W WW .100 .T WW .100Y.C M.TW M .1 OM W WW 00Y.CO .TW W .C W CO W W W 0Y Y. W TW . 0 W OM W.1 M.T .100 W.1 Y.COM W R1 can be between 1k and 5k..CO best temperature coef- W WW .100Y.C M.TW WW 00Y (For W W R2.= 00 (8.13 − 1) =.7.13k, closest 1% value is 7.15k W . film 1 1k ficient and stability with time, use 1% metalT resistors) MT O W W.1 Y.COM W WW 00Y.CO .TW WW .100Y.C M.TW W W W M .1 O W M.T .100 WW 00Y.CO .TW WW .100Y.C M.TW WW 00Y.CO .TW W W O M .1 OM W.1 WW W Y.C WW 00Y.CO .TW WW .100Y.C (L1) .A.W 2. Inductor Selection M T Calculate E • W • µs) .100 T (V 2. Inductor Selection (L1) A. Calculate the inductor Volt • W M.T W M .1(V • µs), from the following O W CO O microsecond constant, EW •T WW .100Y. .TW WW .100Y.C M.TW WWformula:00Y.C M.TW OM W .1 O W O W WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW W B. E • TW 115 V • µs O ILOAD(Max) = 1A D. Inductance = C. .CO .TW WW WW 00Y.CO .TW RegionWH470 E. Inductor Value TW µH Choose from AIE.100Y 0Y.C M. = 470 W= W .10 OM 1 part #430-0634, Pulse Engineering part #PE-53118, W or B. Use the E • T value from theW. previous formulaM WW 00Y O .TW WW .100Y.C M.TW Renco part #RL-1961. .C W vertical0axis.CO and .match W it with the E • T number on the 0Y of the Inductor W TW O W OM W.1 Value Selection Guide shown inW.1 7. C. On M horiFigure CO the TW WW .100Y.C M.T W Y WW .100Y.C M.TW zontal axis, select the maximum load current. .D. Identify the W O 100 W M. O inductance region intersected by the .E • T value and the W .CO WW .100Y.C M. WW the0inductor code .forW maximum load current value,W note and WW .100Y.C M.TW 0Y the inductor T O W that region. E. Identify the inductor value from O W W.1 Y.COM WW .100Y.C M code, and select an appropriateWW from the table shownTW inductor WW .100Y.C M.TW O in Figure 9. Part numbers are listed for three inductor OM. manuW .100 O W C facturers. The inductor chosen mustWW be rated for operation at WW .100Y.C M WW .100Y.C M.TW W kHz) and 0Y.a current .TW the LM2575 switching frequency (52 O W M .10 for O W rating of 1.15 x ILOAD. For additional inductor information, see WW .100Y.C WW 00Y.CO .TW WW .100Y.C M.TW W the inductor section in the application hints section of this data O W M O W W.1 sheet. .CO WW .100Y.C WW .100Y.C M.TW W)W The.100Yof the M.TW W Selection (COUT)O 3. Output Capacitor Selection (COUT A. W value O 3. Output CapacitorWW .C A. .TW WW .100Y.C W 00Y 0the WW defines Y.C M.TW output capacitor together with the inductor W .10 OM W.1 dominate pole-pair of the switching regulator loop. For .CO WW .100Y. WW 00Y W WW .100Y.C M.TW W .T W However, for acceptable output ripple voltage select COUT ≥ stable operation, the capacitor must satisfy the following W OM W.1 .CO WW .100Y WW .1 capacitor M.TW WW .100Y.C 220.µFWOUT = 220 µF electrolytic00Y TC requirement: W M O W WW .100 WW 00Y.CO .TW WW .100Y.C M.TW W W O W OM W.1 WW .10 WW .100Y.C M.TW WW 10 00Y.C M.TW The above formula yields capacitor values between .1 µF W O W and 2000 µF that will satisfy the loop requirements for stable Y.CO WW .1 WW 00 W WW .100Y.C M.TW operation. But to achieve an acceptable output W voltage, ripple W M.T .1 O W (approximately 1% of the output voltage) and transient reWW WW 00Y.CO .TW WW .100Y.C M.TW W sponse, the output capacitor may need to be several times W M .1 O W larger than the above formula yields. B. The capacitor’s W WW W volt- 00Y.CO .TW WW .100Y.C M.TW age rating should be at last 1.5 times greater thanW output 1 the O W OM voltage. For a 10V regulator, a rating of at least 15V or more . W WW .100Y.C M.TW is recommended. Higher voltage electrolytic capacitors genWW .100Y.C M.TW O W erally have lower ESR numbers, and for this reason it may be O W WW .100Y.C necessary to select a capacitor rate for a higher voltage than WW .100Y.C M.TW would normally be needed. O W WW WW .4. 00Y.C M.TW (D1) A. W this example, a 3A 4. Catch Diode Selection (D1) A. The catch-diode current Catch Diode Selection For O W1 rating must be at least 1.2 times greater than the maximumW current Y.C is adequate. B. Use a 40V MBR340 or rating W .TW 100 Schottky diode, or any of the suggested load current. Also, if the power supply design must 31DQ04 .COM W. WW fast-recovery diodes in Figure 8. 00Y withstand a continuous output short, the diode should have W.1 a current rating equal to the maximum current limit of the WW LM2575. The most stressful condition for this diode is an overload or shorted output. See diode selection guide in Figure 8. B. The reverse voltage rating of the diode should be at least 1.25 times the maximum input voltage. 15 www.national.com LM1575/LM2575/LM2575HV O W M .1 O W. WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W O WW .100Y.C WW Inductor Value Selection GuidesC Continuous Mode Operation) (Continued) M.TW W Y.C WW .100Y. (For M.TW W O W M.T .100 O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W W M .1 PROCEDURE (Adjustable Output Voltage Versions) O EXAMPLE (Adjustable Output.CO Voltage Versions) W WW ) A 100 µF WW 5. 0Y.CO .TW ) An aluminum or tantalum .C . WW .100Y .TW Capacitor (CINW.100Y aluminumTW W 0 Input Capacitor (CIN M 5. Input OM electrolytic W W W.1 Y.COM W located close Wthe regulator.CO capacitor located near the input0and .ground pins provides YC 0 W .TW 0Y is M.TW Wto WWelectrolytic bypass capacitor W.1 Y.COM W M.T stable operation. WW.10 .100 O needed for sufficient bypassing. O W W Y.C WW .100 .T W WW .100Y.C M.TW M.T .100 W O W National Semiconductor is making available computer.COMsoftware to O To further simplify the buck regulator design procedure, W 0Y design on a W WW with the Simple .TW WW .100Y.C M.T Made Wbe used.100Y.C MSwitcher line of switching regulators. Switchers W SimpleW W.10is availableM.T (3 ⁄ ") (version 3.3) O O W O W W W Y.C diskette area. WW .100Y.C sales office 0 compatible TW WW for1IBMY.C M.computers from a National SemiconductorM.TW in your W W.100 M.T . 0 O W .CO .TW O W WW .100Y WW .100Y.C M.TW WW .100Y.C M.TW OM W O WW 00Y.C W WW .100Y.C M.TW WW 00Y.CO .TW W W M.T .1 O W W.1 Y.COM W WW 00Y.CO .TW WW .100Y.C M.TW W W W M .1 O W M.T .100 WW 00Y.CO .TW WW .100Y.C M.TW WW 00Y.CO .TW W W O W M .1 OM W.1 WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W O W WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.T WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M. WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C WW .100Y.C M.TW WW .100Y.C M.TW W O W O W WW .100Y.C WW .100Y.C M.TW WW .100Y.C M.TW W O W O W WW .100Y. WW .100Y.C M.TW WW .100Y.C M.TW W O W O W WW .100Y WW .100Y.C M.TW WW .100Y.C M.TW W O W WW .100 WW 00Y.CO .TW WW .100Y.C M.TW W W O W OM W.1 WW .10 WW .100Y.C M.TW WW .100Y.C M.TW W O W WW .1 WW 00Y.CO .TW WW .100Y.C M.TW W W O W OM W.1 WW WW .100Y.C M.TW WW .100Y.C M.TW W O W WW WW 00Y.CO .TW WW .100Y.C M.TW W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C WW .100Y.C M.TW W O W WW WW .100Y.C M.TW O W WW .100Y.C M.TW O W WW .100Y.C W WW 12 www.national.com 16 LM1575/LM2575/LM2575HV O W M .1 O W. WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW W O W .CO .TW WW WW 00Y.CO Selection Guides (For0Continuous ModeW W WW .1 0Y.C M.T Operation) (Continued) .100Y W Inductor Value M.T OM W .1 WW 00Y.CO .TW WW .100Y.C M.TW WW 00Y.CO .TW W W OM W.1 WW 00Y.CO .TW W.1 Y.COMV W W Schottky WW .100Y.C Fast Recovery W .TW RT W M W.1 Y.COM W M. .100 W 1A W3A 00Y.CO .TW 3A WW WW 00Y.CO .TW 1A W W M.T .100 M 20V 1N5820W.1 WW 00Y.CO .TW W.1 Y.COM 1N5817 CO W WW .100Y. .TW WW .100 M .1 .TW MBR320 MMBR120P OM W WW 00Y.CO .TW W .C W CO SR102 W W SR302 W 0Y Y. W TW . W .10 OM W.1 M.T .100 OM 1N5821 WW CO W Y.C WW .100Y.C M.TW WW 00Y.30V 1N5818 W W W .100following M.T following O W MBR330 The M.T O The W.1 Y.COMBR130P WW diodesY.Call diodes are all WW .100Y.C M.TW W W 31DQ03 0 are W TW . 0 W 11DQ03 O W M.T .100 W.1 to 100VOM to 100V WW .100Y.C M.TW WW 00Y.CO .TW SR303 WW rated00Y.C rated.TW SR103 W O W M .1 40V 1N5819 OM W.1 WW .100Y.C M.TW WW 00Y.CO .TW IN5822 WW 11DF1Y.C 31DF1 0 .TW 0 W O MBR140P MBR340 W M .1 OM W.1 .CO WW .100Y.C M.TW WW 00Y11DQ04 .TW31DQ04 WW MUR110 Y.C MURD310 .TW 00 W O W M .1 HER102 HER302 OM W.1 SR104 SR304 WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W O 50V W.1 MBR150 M MBR350 WW .100Y.C M.TW WW .100Y.C M.TW 0Y.C WW .1011DQ05 M.TW O W O W O 31DQ05 W WW .100Y.C M.TW WW .100Y.C M.TW 0Y. WW .1SR105C M.SR305 TW 0 O W O W 60V WW .100Y.C M.TW WW MBR160 O MBR360 W Y.C WW .100Y.C M.TW W O W M.T .100 O W WW .100Y.C M.TW WW11DQ06 .CO 31DQ06 WW .100Y.C M.TW 0Y W TW SR106 SR306 O W M. .10 O W WW .100Y.C M.T WW 00Y.CO .TW WW .100Y.C M.TW W O W O OM W.1 FIGURE 8. Diode Selection GuideW WW .100Y.C M. WW .100Y.C M.TW WW .100Y.C M.TW O W O W CO Schott WW .100Y.C M WW W WW .100Y.C M.TW Inductor Inductor 00Y. Pulse Eng. Renco W O W M.T .1 O W Code Value (Note (Note WW .100Y.C M WW 00Y.CO (Note 15) WW 16)00Y.C M.TW 17) W .TW .1 O W M .1 O RL2444 L100 100 µH 67127000 PE-92108 WW WW .100Y.C WW 00Y.CO .TW WPE-53113100Y.C M.RL1954 TW W 150.1 L150 µH 67127010 O W O W. OM W WW .100Y.C W220 µH00Y.C67127020 W L220 PE-52626 RL1953 WW .100Y.C M.TW W .T W O W OM W.1 L330 330 µH 67127030 PE-52627 WW .100Y.C WW .100Y.C RL1952 .TW WW µH100Y.C M.TW M W L470 470W. 67127040 PE-53114 ORL1951 W WW .100Y. W µH 00Y.CO .TW WW .100Y.C RL1950W .T W680 .1 67127050 L680 PE-52629 W OM W OM W WW .100Y H150 150 µH PE-53115 Y.C WW .100Y.C RL2445TW . WW .10067127060M.TW W OM O H220 220 WW µH 67127070 PE-53116 W RL2446 WW .100 W Y.C WW .100Y.C M.TW 0 W .T W H330 330 µH W.10 67127080 M PE-53117 RL2447 O W .CO .TW PE-53118 WW 00Y.C WW .10 W W 0Y W H470 470 µH 67127090 M RL1961 .T 0 W OM W.1 W.167127100 O WW .1 H680 680 WW µH RL1960 W PE-53119WW .100Y.C M.TW Y.C W M.T PE-53120 WW .100 H1000 1000 µH WW67127110 CO RL1959 .CO WW Y. 0 W .TWPE-53121 W W.100Y OM.TW W H1500 1500 µH 67127120 RL1958 M .10 WW WW 00Y.CO .TW WW .100Y.C M.TW H2200 2200 µH W 67127130 RL2448 M PE-53122 .1 O W WW 00Y.CO .TW WW .100Y.C M.TW W O W OM W.1 Note 15: Schott Corp., (612) 475-1173, 1000 Parkers Lake Rd., Wayzata, MN 55391. WW .100Y.C WWCA 92112. 0Y.C M.TW 10 Note 16: Pulse Engineering, (619) 674-8100, P.O. Box 12236, San Diego, W O W. WW Note 17: Renco Electronics Inc., (516) 586-5566, 60 Jeffryn Blvd. East, Deer Park, NY 11729. WW .100Y.C M.TW O W FIGURE 9. Inductor Selection by Manufacturer’s Part Number WW .100Y.C M.TW O W WW .100Y.C W WW 17 www.national.com LM1575/LM2575/LM2575HV O W M .1 O W. WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW W O W O W OM W.1 WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W O W WW .100Y.C M.TW WW 00Y.CO .TW WW .100Y.C M.TW pletely contained within the core, it generates more electroW O 1 W M .Application Hints O W magnetic interference (EMI). This.C can cause problems W WW .1 give EMI M TW WW 00Y.CO .TW WW .100Y.C M.Tin sensitive circuits, or can 00Y incorrect .scope readings W O W .1 INPUT CAPACITOR (CIN) O W OM WW . 0 the.C probe. WW maintain stability,.TWregulator inputW must0be .C Y.C W pin .1 0Yby- M.because of induced voltages1in 0Y scope M.TW TW W To .100 M the the selection chart include ferrite pot O The inductors listed inWW W .CO .T W Wpassed0with.CO .a W µF electrolytic capacitor.0TheC Y at least T47 short, and W .near Y. W located 10 the coreW for powdered .T construction W AIE,W.100Y iron toroid W Pulse 0 W capacitor’s leads must be kept M OM for M .1 WW 00Y.CO Engineering, and ferriteW W regulator. 0 for Renco. W bobbin.core Y.C M.TW WW 00Y.CO .TW 0 W W M.T .1 An inductor should not be W 1 If the .1 temperature range includes WW temperatures .CO .CO an inductor Woperated0beyond its maximum Woperating.COM W W W rated TW saturate. W . current because it mayW.10 Y When M.TW Wbelow −25˚C,Y input capacitor value may need to 00Y 1 be 00 the M.T O begins OM to saturate, the inductance decreases rapidly and the W. W.1 Y. electrolytic W larger. With most CO capacitors, the capacitance W Y WW .10 (the.C resistance WW .10 .C M.TW 0 WW decreases and the M.Tincreases with lower tempera- 0Y inductor begins to look mainly resistive 0 DC OM.T of value ESR .10 W ca- Y.CO winding). This will causeWW .C to rise.TW O the current very W Y tures and age. Paralleling a ceramic or solid WW tantalum W the switch different saturation TW 0Y. the M.TW WW increaseC regulator stability at cold tempera- 00 rapidly. .Different inductor types W.100 have .1 OM pacitor will .10 OM O W W .C WW in 0Y.C selectWW TW tures.W 0Y.C M.T operating W the 0Y characteristics, and this should be kept.10mind when M.T W For maximum capacitor W inductor. O 10ripple current rating should belifetime, than.10 ing an M. W O capacitor’sW. RMS greater W O 0Y.C M.TW WW WW .100Y.C inductorTW The include WW .100Y.C M.TW M. manufacturer’s data sheets.10 current and O W O W O energy limits to avoid inductor saturation. W WW .100Y.C M.TW WW .100Y.C M.TW WW .100Y.C M.TW O W INDUCTOR RIPPLE WW 00Y.CO .TW WW 00Y.CO .TW WW .100Y.C M.TW CURRENTW W M .1 M .1 switcher is operating in theWW continuous mode,O W When theO .C the W WW 00Y.CO .TW 00Y WW .100Y.Ccurrent .waveform ranges from a triangular to a M.TW TW inductor W M O W.1 M .1 WW sawtoothCO of waveform (depending on the input 0Y.C Y. type .TW and output voltage, .the voltage). M.TW WW WW 00Y.CO .TW 0 W 10 peak-to-O 0a given input voltage W For W remains M .1 W.1 Y.COM W .C W inductor current W WW 00Y.CO .TW WW peak0amplitude of thiscurrent rises orW waveform 00Y W .1 saw- OM.T 1 0 As the M.T . constant. falls, the entire W M .1 O load W .C O W current waveform also WW .1 0 DC .TW WW tooth100Y.C M.TW rises or falls. The averageY WW .100Y.C M.TW . of this waveform is equal to the DC load current0(in the.COM W value O W INDUCTOR SELECTION O W . Y .C WW .T WW regulatorC M.TW buck 100Y configuration). 100 WW .100 basic modesTW All switching regulators have twoY . OM M. of operation: O to a low enough level,WW. W W The .CO .C If the load current drops the bottom 0Y.C of W continuous and discontinuous. W . .TW 10 00 0Ydifference .between the WW .1 current, whether itWflowing W the sawtoothY T is two types relates to the inductor0 O waveform W.1 current M W will reach zero, W. the0Y.COM OMof time in the W and 0 W switcher W continuously, or if it WW to zero for a C drops 0Y.C M.T Y. period .TW WW will0change to a discontinuous mode of operation. .1 OM M .100 This isW.1 a perfectly acceptable mode of operation.WW Any buck normal switching cycle. Each mode has distinctively different O W W regulator.COmatterTW large the inductor value00Y.C .C Y (no W W can affect the regulator perW W switching 100 operating characteristics, which 00Y W M. how . OM W.1 M.T .1 is) will be forced to .CO formance and requirements. W WW 00Yrun discontinuous if the load current is100Y.C W .CO .TW WW . W W 0Y family) W light enough..1 M.T O The LM2575 (or any of the Simple10 be W W. SwitcherCOM can W WW 00Y.CO .TW WW .100Y.C used for both continuous

Helpful tips for completing your ‘Ascent Agreement And Registration Form Frh Psdschools’ online

Fed up with the inconvenience of handling paperwork? Look no further than airSlate SignNow, the premier electronic signature service for both individuals and businesses. Bid farewell to the tedious task of printing and scanning documents. With airSlate SignNow, you can easily fill out and sign documents online. Take advantage of the robust features embedded in this user-friendly and cost-effective platform and transform your method of document management. Whether you need to authorize documents or collect eSignatures, airSlate SignNow manages it all seamlessly, requiring just a few clicks.

Adhere to this comprehensive guide:

  1. Sign into your account or register for a complimentary trial with our service.
  2. Tap +Create to upload a document from your computer, cloud storage, or our form repository.
  3. Access your ‘Ascent Agreement And Registration Form Frh Psdschools’ in the editor.
  4. Select Me (Fill Out Now) to finalize the form on your end.
  5. Add and allocate fillable fields for other participants (if necessary).
  6. Continue with the Send Invite options to solicit eSignatures from others.
  7. Store, print your version, or convert it into a reusable template.

Don’t worry if you need to collaborate with your coworkers on your Ascent Agreement And Registration Form Frh Psdschools or send it for notarization—our solution provides everything required to accomplish these tasks. Enroll with airSlate SignNow today and take your document management to advanced levels!

Here is a list of the most common customer questions. If you can’t find an answer to your question, please don’t hesitate to reach out to us.

Need help? Contact Support
Fossil Ridge high school registration
Frhs course catalog
Fossil Ridge master schedule
Sign up and try Ascent agreement and registration form frh psdschools
  • Close deals faster
  • Improve productivity
  • Delight customers
  • Increase revenue
  • Save time & money
  • Reduce payment cycles