Write Companion Calculated with airSlate SignNow

Get rid of paper and automate digital document processing for higher performance and countless opportunities. Sign any papers from your home, fast and accomplished. Discover a better manner of doing business with airSlate SignNow.

Award-winning eSignature solution

Send my document for signature

Get your document eSigned by multiple recipients.
Send my document for signature

Sign my own document

Add your eSignature
to a document in a few clicks.
Sign my own document

Improve your document workflow with airSlate SignNow

Flexible eSignature workflows

airSlate SignNow is a scalable solution that grows with your teams and company. Build and customize eSignature workflows that fit all your company needs.

Fast visibility into document status

View and download a document’s history to track all adjustments made to it. Get instant notifications to understand who made what edits and when.

Simple and fast integration set up

airSlate SignNow easily fits into your existing business environment, helping you to hit the ground running instantly. Use airSlate SignNow’s robust eSignature capabilities with hundreds of well-known applications.

Write companion calculated on any device

Avoid the bottlenecks related to waiting for eSignatures. With airSlate SignNow, you can eSign documents immediately using a desktop, tablet, or mobile phone

Advanced Audit Trail

For your legal protection and standard auditing purposes, airSlate SignNow includes a log of all adjustments made to your documents, featuring timestamps, emails, and IP addresses.

Rigorous protection standards

Our top goals are securing your documents and important data, and guaranteeing eSignature authentication and system defense. Remain compliant with industry requirements and regulations with airSlate SignNow.

See airSlate SignNow eSignatures in action

Create secure and intuitive eSignature workflows on any device, track the status of documents right in your account, build online fillable forms – all within a single solution.

Try airSlate SignNow with a sample document

Complete a sample document online. Experience airSlate SignNow's intuitive interface and easy-to-use tools
in action. Open a sample document to add a signature, date, text, upload attachments, and test other useful functionality.

sample
Checkboxes and radio buttons
sample
Request an attachment
sample
Set up data validation

airSlate SignNow solutions for better efficiency

Keep contracts protected
Enhance your document security and keep contracts safe from unauthorized access with dual-factor authentication options. Ask your recipients to prove their identity before opening a contract to write companion calculated.
Stay mobile while eSigning
Install the airSlate SignNow app on your iOS or Android device and close deals from anywhere, 24/7. Work with forms and contracts even offline and write companion calculated later when your internet connection is restored.
Integrate eSignatures into your business apps
Incorporate airSlate SignNow into your business applications to quickly write companion calculated without switching between windows and tabs. Benefit from airSlate SignNow integrations to save time and effort while eSigning forms in just a few clicks.
Generate fillable forms with smart fields
Update any document with fillable fields, make them required or optional, or add conditions for them to appear. Make sure signers complete your form correctly by assigning roles to fields.
Close deals and get paid promptly
Collect documents from clients and partners in minutes instead of weeks. Ask your signers to write companion calculated and include a charge request field to your sample to automatically collect payments during the contract signing.
Collect signatures
24x
faster
Reduce costs by
$30
per document
Save up to
40h
per employee / month

Our user reviews speak for themselves

illustrations persone
Kodi-Marie Evans
Director of NetSuite Operations at Xerox
airSlate SignNow provides us with the flexibility needed to get the right signatures on the right documents, in the right formats, based on our integration with NetSuite.
illustrations reviews slider
illustrations persone
Samantha Jo
Enterprise Client Partner at Yelp
airSlate SignNow has made life easier for me. It has been huge to have the ability to sign contracts on-the-go! It is now less stressful to get things done efficiently and promptly.
illustrations reviews slider
illustrations persone
Megan Bond
Digital marketing management at Electrolux
This software has added to our business value. I have got rid of the repetitive tasks. I am capable of creating the mobile native web forms. Now I can easily make payment contracts through a fair channel and their management is very easy.
illustrations reviews slider
walmart logo
exonMobil logo
apple logo
comcast logo
facebook logo
FedEx logo
be ready to get more

Why choose airSlate SignNow

  • Free 7-day trial. Choose the plan you need and try it risk-free.
  • Honest pricing for full-featured plans. airSlate SignNow offers subscription plans with no overages or hidden fees at renewal.
  • Enterprise-grade security. airSlate SignNow helps you comply with global security standards.
illustrations signature

Your step-by-step guide — write companion calculated

Access helpful tips and quick steps covering a variety of airSlate SignNow’s most popular features.

Using airSlate SignNow’s eSignature any business can speed up signature workflows and eSign in real-time, delivering a better experience to customers and employees. write companion calculated in a few simple steps. Our mobile-first apps make working on the go possible, even while offline! Sign documents from anywhere in the world and close deals faster.

Follow the step-by-step guide to write companion calculated:

  1. Log in to your airSlate SignNow account.
  2. Locate your document in your folders or upload a new one.
  3. Open the document and make edits using the Tools menu.
  4. Drag & drop fillable fields, add text and sign it.
  5. Add multiple signers using their emails and set the signing order.
  6. Specify which recipients will get an executed copy.
  7. Use Advanced Options to limit access to the record and set an expiration date.
  8. Click Save and Close when completed.

In addition, there are more advanced features available to write companion calculated. Add users to your shared workspace, view teams, and track collaboration. Millions of users across the US and Europe agree that a solution that brings everything together in a single holistic workspace, is the thing that enterprises need to keep workflows functioning easily. The airSlate SignNow REST API enables you to embed eSignatures into your app, internet site, CRM or cloud. Check out airSlate SignNow and get faster, smoother and overall more productive eSignature workflows!

How it works

Upload a document
Edit & sign it from anywhere
Save your changes and share

airSlate SignNow features that users love

Speed up your paper-based processes with an easy-to-use eSignature solution.

Edit PDFs
online
Generate templates of your most used documents for signing and completion.
Create a signing link
Share a document via a link without the need to add recipient emails.
Assign roles to signers
Organize complex signing workflows by adding multiple signers and assigning roles.
Create a document template
Create teams to collaborate on documents and templates in real time.
Add Signature fields
Get accurate signatures exactly where you need them using signature fields.
Archive documents in bulk
Save time by archiving multiple documents at once.
be ready to get more

Get legally-binding signatures now!

FAQs

Here is a list of the most common customer questions. If you can’t find an answer to your question, please don’t hesitate to reach out to us.

Need help? Contact support

What active users are saying — write companion calculated

Get access to airSlate SignNow’s reviews, our customers’ advice, and their stories. Hear from real users and what they say about features for generating and signing docs.

Financial Advisory Firm Using SIGN NOW for A Year
5
User in Investment Management

What do you like best?

I like that it is very easy to use, is secure, that I can add password security, and that I can see all the documents or just the ones for which I am awaiting a reply. All this at a reasonable price!

Read full review
Easy to use, accessible on the go - exactly what you need & expect for business in a modern...
5
Administrator in Real Estate

What do you like best?

You can access from desktop or your cellphone, makes it a breeze to fill out important forms on the go and the instant update when it's signed is convenient.

Read full review
Better than the others!
5
Administrator in Health, Wellness and Fitness

What do you like best?

I like the ease of setting custom fields for populating while allowing both Word and PDF file uploads.

Read full review

Related searches to write companion calculated with airSlate airSlate SignNow

the companion matrix and its properties
how to find the companion matrix of a polynomial
companion matrix polynomial roots
companion form var
minimal polynomial of companion matrix
companion form state space
companion matrix eigenvalues
companion matrix jordan form
video background

Add companion formula

Welcome to another Mathologer video. The shoelace formula is a super simple way to calculate the exact area inside any convoluted curve made up of straight line segments, like my cat head curve over there. Even the great mathematician Carl Friedrich Gauss was impressed by this formula and mentioned it in his writings. The formula was certainly not invented by him, however it's often also referred to as Gauss's area formula, probably because a lot of people first learned about it from Gauss (and not because someone calculated Gauss's area with it :) In today's video I'll show you how and why this formula works. The visual proof I'll show you is just as pretty as the formula itself and along the way I can promise you a couple of very satisfying AHA moments to make your day. I've got a special treat for you at the end of the video: a simple way to morph the shoelace formula into a very famous and very powerful integral formula for calculating the area enclosed by really complicated curvy curves, like for example this deltoid rolling curve here. Now obviously we call this crazy formula the shoelace formula because it reminds us of the usual crisscross way of lacing shoes. Now let's make sense of the shoelace formula and use it to calculate the orange area. I start by filling in the coordinates of the blue points. Take one of these points and move its coordinates to the right. Now we traverse the curve in the counterclockwise direction and do the same for the other blue points we come across. Here, there, there, there. Now we're back at the point we started from and include its coordinates one more time at the end of our list. Now draw in the crosses. Okay this green segment stands for the product of the two numbers at its ends. So 4 times 1 equals 4.This red segment stands for minus the product of the number at its two ends. So 4 times 0 equals 0. Minus that is - 0. Oh, well obviously the "minus" is not important here but it will be later. Green again. So 0 times 5 equals 0. Red again, we need to calculate minus the product, so 1 times - 2 equals -2. Minus that, and so on. So we get two products for every cross, one taken positive and one negative. Now adding up all the numbers gives 110. Okay, almost there. The formula tells us to divide by two. So half of 110 is 55, and that's the area of my cat head. Really pretty and super simple to use. And this works for any closed curve in the xy-plane no matter how complicated. The only thing you have to make sure of is that the curve does not intersect itself like this fish curve here. And it will become clear later on why you have to be careful in this respect. Okay now for the really interesting bit, the explanation why the shoelace formula works. It turns out that the individual crosses in the formula correspond to these triangles which cover the whole shape. Note that all these triangles have the point (0,0) in common. Okay, so the area of the first triangle here is just 1/2 times the first cross. So, again, the first cross is equal to 4 times 1 minus 4 times 0 equals 4, and half that is 2. And it's actually easy to check that this is true using the good old 1/2 base times height area formula for triangles. Now the area of the second triangle is 1/2 times the second cross, and so on. But why is the area of one of these triangles equal to 1/2 times the corresponding cross? Here's a nice, really really nice visual argument due to the famous mathematician Solomon Golomb. What we want to convince ourselves of is this. So let's calculate the area of this triangle from scratch. Actually what we'll do is to calculate the area of this parallelogram here whose area is double that of the triangle. Okay let's start with the special rectangle here. Then the coordinates translate into the side lengths of these two triangles. First (a,b) turns into these two side lengths, and then (c,d) into these. Color in the remainder of the rectangle and shift the green triangles like this, and like that, Now do you see the second small rectangle materializing? Right there. The two triangles overlap in the dark green area and so we can pull the colored bits apart so that they fill exactly the parallelogram and the little rectangle. Since we started out with the colored bits filling a large rectangle this means that "large rectangle area" equals "parallelogram area" plus "small rectangle area". But now the areas of the rectangles are ad and bc. That's almost it. Now, without any words... Pure magic, right? And, of course, all of you who are familiar with vectors and matrices will realize that another way of expressing what we just proved is the mega famous result from elementary linear algebra that the area of the parallelogram spanned by the two vectors (a,b) and (c,d) is equal to the determinant of the 2 x 2 matrix a,b,c,d. Anyway, back to the shoeless formula. At this point we just need to divide by 2 to get the area of the triangle and that's it, right? That completes the proof that the shoeless formula will always work, right? Well, not quite. We are still missing one very important very magical step. Let's have another look at my cat hat, but let's shift it so that the point (0,0) is no longer inside and again move around the curve and highlight the triangles whose area the shoeless formula adds. This time let's start here. As we move around the curve in the counterclockwise direction the green radius which chases us also rotates around (0,0) in the counterclockwise direction. Something does not look right here. The yellow triangles are sticking out of the cat head and at this point the combined area of the triangle is larger than that of the cat head and should get even larger as we keep going. However, whereas up to now the radius has been rotating in the counterclockwise direction, at this point it starts rotating in the clockwise direction and this change in sweeping direction has the effect that the shoeless formula subtracts the areas of the blue triangles. And this means that the area calculated by the shoelace formula will be the total area of the yellow triangles minus that of the blue triangles which is exactly the area of our cat head again. The same sort of nifty canceling of areas makes sure that no matter how convoluted a closed curve is as long as it doesn't intersect itself the shoelace formula will always give the correct area. Here's an animated complicated example in which I dynamically update what area the shoelace formula has arrived at at the different points of the radius changing sweeping direction. Real mathematical magic, isn't it? It's also easy to see why reversing the sweeping direction leads to negative area. Let's see. Sweeping in the counterclockwise direction we first come across (a,b) and record it, followed by (c,d). When we sweep clockwise the order in which we come across (a,b) and (c,d) is reversed and this leads to these changes in the formulas. And the last swap obviously leads to the number turning into it's negative. And that's really it. Now you know how the shoelace formula does what it does. In these videos we keep encountering really fancy curves like this cardioid in a coffee cup in the "Mandelbrot and times tables" video or this deltoid rolling curve whose area actually already played a quite important role in the video on the Kakeya needle problem. At first glance it looks like we won't be able to use the shoelace formula to calculate the area of one of these curves because they are not made up from line segments. Well you can definitely approximate the area by calculating the area of a straight line approximation like this, with those blue points on the curve. And by increasing the number of points we can get as close to the true area as we wish. In fact, by taking this process to the limit in the usual calculus way, we can turn the shoelace formula into a famous integral formula for calculating the exact area enclosed by complicated curves like the deltoid. Here's how you do this. I've tried to make sure that even if you've never studied calculus you'll be able to get something out of this. Well we'll see, fingers crossed :) A curve like this is often given in parametric form. For example this is a parametrizations of this deltoid. Here x(t) and y(t) are the coordinates of a moving point that traces the curve as the parameter t changes from, in this case 0 to 2 pi. Let's have a look. So here's the position of the point at t=0. And once it gets going the slider up there tells you what t we are up to. Right now we'll translate all this into the language of calculus. Let's stop the point somewhere along its journey. A little bit further along we find a second point. A tiny, tiny little bit further on is usually expressed in terms of infinitesimal displacements in x and y. It's a bit lazy to do it this way but mathematicians are a bit lazy and love doing this because it captures the intuition perfectly and in the end can be justified in a rigorous way. Anyway just add dx and dy to the coordinates of our first point to get the coordinates of our second point. Now, of course, these displacements are not independent of each other. The connection is most easily established in terms of the derivatives of the coordinate functions. So the derivative of the x coordinate with respect to the parameter t is dx/dt which I write at x'(t) and similarly for the y coordinate function. Solving for dx and dy gives this and this then links both dx and dy to an increment dt of the parameter t that's changing, right? Now we substitute like this and now we're ready to calculate the area of our infinitesimal triangle as before. 1/2 times a cross. And this evaluates to this expression here. And this we can write in a slightly more compact form like that. Okay now what we have to do is to add all these infinitely many infinitesimal areas and as usual in calculus this is done with one of those magical integrals. The little circle twirling in the counterclockwise direction says that we're supposed to integrate around the curve exactly once in the counterclockwise direction. Well let's see: for our deltoid we have this parameterization here. We've already seen that a full trace is accomplished by having t run from 0 to 2 pi. This means that in this special case our integral can be written like this. Now evaluating and simplifying the expression in the brackets gives this integral here, which can be broken up into two parts. Maths students won't be surprised that the trig(onometric) integral on the right evaluates to 0 which then means that the area where after is equal to this baby integral which of course is equal to 2 pi. Now the little rolling circle that is used to produce our deltoid is of radius 1 and is therefore of area pi. This means that the area of the deltoid is exactly double the area of the rolling circle. Neat isn't it? Okay, up for a couple of challenges? Then explain in the comments what the number stands for that the shoeless formula or the integral formula produce in the case of self intersecting curves like these here. Another thing worth pondering is how the argument for our triangle formula has to be adapted to account for the blue points ending up in different quadrants, for example, like this. And that's it for today. I hope you enjoyed this video and as usual let me know how well these explanations worked for you. Actually since I mentioned the Kakeya video and fish, I did end up turning my Kakeya fish into a t-shirt. What do you think? Well and that's really it for today.

Show more

Frequently asked questions

Learn everything you need to know to use airSlate SignNow eSignatures like a pro.

See more airSlate SignNow How-Tos

How can I allow customers to eSign contracts?

To close deals faster, upload your contract to your airSlate SignNow account. Add fillable fields for eSignatures, text, and initials, and click Invite to Sign. If you have several recipients, assign each recipient to a role (a field) and set up a signing order. Once you send it, your customers will receive emails with invitations to eSign the agreement. They don't need airSlate SignNow accounts to do so. According to the ESIGN Act, airSlate SignNow is compliant and produces legally-binding eSignatures for document authors and recipients.

Can I create a doc and add an electronic signature?

To create electronic signatures in any document, you need to upload it to your airSlate SignNow account. It does not matter where you typically store records, you can add them from the cloud, your phone, laptop, and so on. Moreover, using airSlate SignNow add-ons, you can sign documents within your inbox or search engine. Open an imported file in the built-in editor to start editing, sharing, or eSigning it. Grab a Signature Field and click anywhere on the page. Generate your electronic signature by typing, drawing, and/or uploading an image. Apply edits by clicking Save and Close and export your enforceable PDF to wherever you need.

How can I sign a page and combine it with another PDF?

It is not difficult to sign one page and then combine it with another, but you face the risk of making your document invalid. In short, an eSignature confirms that a person got acquainted and agreed with the contents inside a PDF before signing it. To combine separate documents after signing can be seen as voiding an electronic signature. What that means is when merging, you create a new document that loses all the timestamps and IP addresses of its originals, turning the legally-binding signature into a simple picture attached to the document. airSlate SignNow’s Document History keeps records of all changes taken to a particular file. What you should do for a more streamlined, time-effective experience while negotiating on contracts is Merge documents in airSlate SignNow before you sign them or send them for signing.
be ready to get more

Get legally-binding signatures now!